Skip to content

Commit 07e2d70

Browse files
TorkelEisaacsas
andcommitted
Update docs/src/inverse_problems/optimization_ode_param_fitting.md
Co-authored-by: Sam Isaacson <[email protected]>
1 parent 59aafbc commit 07e2d70

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

docs/src/inverse_problems/optimization_ode_param_fitting.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -128,7 +128,7 @@ If we from previous knowledge know that *kD = 0.1*, and only would like to fit t
128128
fixed_p_prob_generator(prob, p) = remake(prob; p = vcat(p[1], 0.1, p[2]))
129129
nothing # hide
130130
```
131-
Here, it takes the `ODEProblem` (`prob`) we simulates, and the parameter set used, during the optimisation process (`p`), and creates a modified `ODEProblem` (by setting a customised parameter vector [using `remake`](@ref simulation_structure_interfacing_remake)). Now we create our modified loss function:
131+
Here, it takes the `ODEProblem` (`prob`) we simulate, and the parameter set used, during the optimisation process (`p`), and creates a modified `ODEProblem` (by setting a customised parameter vector [using `remake`](@ref simulation_structure_interfacing_remake)). Now we create our modified loss function:
132132
```@example diffeq_param_estim_1
133133
loss_function_fixed_kD = build_loss_objective(oprob, Tsit5(), L2Loss(data_ts, data_vals), Optimization.AutoForwardDiff(); prob_generator = fixed_p_prob_generator, maxiters=10000, verbose=false, save_idxs=4)
134134
nothing # hide

0 commit comments

Comments
 (0)