You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/src/inverse_problems/structural_identifiability.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -82,12 +82,12 @@ nothing # hide
82
82
```
83
83
84
84
### Probability of correctness
85
-
The identifiability methods used can, in theory, produce erroneous results. However, it is possible to adjust the lower bound for the probability of correctness using the argument `p` (by default set to `0.99`, that is, at least a $99\%$ chance of correctness). We can e.g. increase the bound through:
85
+
The identifiability methods used can, in theory, produce erroneous results. However, it is possible to adjust the lower bound for the probability of correctness using the argument `prob_threshold` (by default set to `0.99`, that is, at least a $99\%$ chance of correctness). We can e.g. increase the bound through:
giving a minimum bound of $99.9\%$ chance of correctness. In practise, the bounds used by StructuralIdentifiability are very conservative, which means that while the minimum guaranteed probability of correctness in the default case is $99\%$, in practise it is much higher. While increasing the value of `p` increases the certainty of correctness, it will also increase the time required to assess identifiability.
90
+
giving a minimum bound of $99.9\%$ chance of correctness. In practise, the bounds used by StructuralIdentifiability are very conservative, which means that while the minimum guaranteed probability of correctness in the default case is $99\%$, in practise it is much higher. While increasing the value of `prob_threshold` increases the certainty of correctness, it will also increase the time required to assess identifiability.
91
91
92
92
## Local identifiability analysis
93
93
Local identifiability can be assessed through the `assess_local_identifiability` function. While this is already determined by `assess_identifiability`, assessing local identifiability only has the advantage that it is easier to compute. Hence, there might be models where global identifiability analysis fails (or takes a prohibitively long time), where instead `assess_local_identifiability` can be used. This function takes the same inputs as `assess_identifiability` and returns, for each quantity, `true` if it is locally identifiable (or `false` if it is not). Here, for the Goodwind oscillator, we assesses it for local identifiability only:
0 commit comments