|
199 | 199 | sprob_1_2 = SDEProblem(noise_scaling_network_1, u0, (0.0, 1000.0), [:k1 => 2.0, :k2 => 0.66, :η1 => 2.0, :η2 => 0.2])
|
200 | 200 | sprob_1_3 = SDEProblem(noise_scaling_network_1, u0, (0.0, 1000.0), [:k1 => 2.0, :k2 => 0.66, :η1 => 0.2, :η2 => 0.2])
|
201 | 201 | for repeat in 1:5
|
202 |
| - sol_1_1 = solve(sprob_1_1, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
203 |
| - sol_1_2 = solve(sprob_1_2, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
204 |
| - sol_1_3 = solve(sprob_1_3, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
| 202 | + sol_1_1 = solve(sprob_1_1, ImplicitEM(); saveat = 1.0, seed = rand(rng, 1:100)) |
| 203 | + sol_1_2 = solve(sprob_1_2, ImplicitEM(); saveat = 1.0, seed = rand(rng, 1:100)) |
| 204 | + sol_1_3 = solve(sprob_1_3, ImplicitEM(); saveat = 1.0, seed = rand(rng, 1:100)) |
205 | 205 | @test var(sol_1_1[:X1]) > var(sol_1_2[:X1]) > var(sol_1_3[:X1])
|
206 | 206 | end
|
207 | 207 |
|
|
215 | 215 | sprob_2_2 = SDEProblem(noise_scaling_network_2, u0, (0.0, 1000.0), [k1 => 2.0, k2 => 0.66, η[1] => 2.0, η[2] => 0.2])
|
216 | 216 | sprob_2_3 = SDEProblem(noise_scaling_network_2, u0, (0.0, 1000.0), [k1 => 2.0, k2 => 0.66, η[1] => 0.2, η[2] => 0.2])
|
217 | 217 | for repeat in 1:5
|
218 |
| - sol_2_1 = solve(sprob_2_1, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
219 |
| - sol_2_2 = solve(sprob_2_2, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
220 |
| - sol_2_3 = solve(sprob_2_3, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
| 218 | + sol_2_1 = solve(sprob_2_1, ImplicitEM(); saveat = 1.0, seed = rand(rng, 1:100)) |
| 219 | + sol_2_2 = solve(sprob_2_2, ImplicitEM(); saveat = 1.0, seed = rand(rng, 1:100)) |
| 220 | + sol_2_3 = solve(sprob_2_3, ImplicitEM(); saveat = 1.0, seed = rand(rng, 1:100)) |
221 | 221 | @test var(sol_2_1[:X1]) > var(sol_2_2[:X1]) > var(sol_2_3[:X1])
|
222 | 222 | end
|
223 | 223 | end
|
@@ -275,14 +275,14 @@ let
|
275 | 275 | sprob = SDEProblem(noise_scaling_network, u0, (0.0, 1000.0), ps)
|
276 | 276 |
|
277 | 277 | for repeat in 1:5
|
278 |
| - sol = solve(sprob, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
| 278 | + sol = solve(sprob, ImplicitEM(); saveat = 1.0, seed = rand(rng, 1:100)) |
279 | 279 | @test var(sol[:X1]) < var(sol[:X2])
|
280 | 280 | @test var(sol[:X1]) < var(sol[:X3])
|
281 | 281 | end
|
282 | 282 | end
|
283 | 283 |
|
284 | 284 | # Tests using complicated noise scaling expressions.
|
285 |
| -let |
| 285 | +@time let |
286 | 286 | noise_scaling_network = @reaction_network begin
|
287 | 287 | @parameters η1 η2 η3 η4
|
288 | 288 | @species N1(t) N2(t)=0.5
|
|
301 | 301 | sprob = SDEProblem(noise_scaling_network, u0, (0.0, 1000.0), ps)
|
302 | 302 |
|
303 | 303 | for repeat in 1:5
|
304 |
| - sol = solve(sprob, ImplicitEM(); saveat=1.0, adaptive=false, dt=0.1, seed = rand(rng, 1:100)) |
| 304 | + sol = solve(sprob, ImplicitEM(); saveat = 1.0, adaptive = false, dt = 0.01, seed = rand(rng, 1:100)) |
305 | 305 | @test var(sol[:X1]) > var(sol[:X2]) > var(sol[:X3]) > var(sol[:X4]) > var(sol[:X5])
|
306 | 306 | end
|
307 | 307 | end
|
|
0 commit comments