You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -72,10 +72,10 @@ be found in its corresponding research paper, [Catalyst: Fast and flexible model
72
72
- Model steady states can be [computed through homotopy continuation](https://docs.sciml.ai/Catalyst/stable/steady_state_functionality/homotopy_continuation/) using [HomotopyContinuation.jl](https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl) (which can find *all* steady states of systems with multiple ones), by [forward ODE simulations](https://docs.sciml.ai/Catalyst/stable/steady_state_functionality/nonlinear_solve/#steady_state_solving_simulation) using [SteadyStateDiffEq.jl](https://github.com/SciML/SteadyStateDiffEq.jl), or by [numerically solving steady-state nonlinear equations](https://docs.sciml.ai/Catalyst/stable/steady_state_functionality/nonlinear_solve/#steady_state_solving_nonlinear) using [NonlinearSolve.jl](https://github.com/SciML/NonlinearSolve.jl).
73
73
-[BifurcationKit.jl](https://github.com/bifurcationkit/BifurcationKit.jl) can be used to [compute bifurcation diagrams](https://docs.sciml.ai/Catalyst/stable/steady_state_functionality/bifurcation_diagrams/) of model steady states (including finding periodic orbits).
74
74
-[DynamicalSystems.jl](https://github.com/JuliaDynamics/DynamicalSystems.jl) can be used to compute model [basins of attraction](https://docs.sciml.ai/Catalyst/stable/steady_state_functionality/dynamical_systems/#dynamical_systems_basins_of_attraction), [Lyapunov spectrums](https://docs.sciml.ai/Catalyst/stable/steady_state_functionality/dynamical_systems/#dynamical_systems_lyapunov_exponents), and other dynamical system properties.
75
-
-[StructuralIdentifiability.jl](https://github.com/SciML/StructuralIdentifiability.jl) can be used to [perform structural identifiability analysis](https://docs.sciml.ai/Catalyst/stable/inverse_problems/structural_identifiability/).
76
75
-[Optimization.jl](https://github.com/SciML/Optimization.jl), [DiffEqParamEstim.jl](https://github.com/SciML/DiffEqParamEstim.jl), and [PEtab.jl](https://github.com/sebapersson/PEtab.jl) can all be used to [fit model parameters to data](https://sebapersson.github.io/PEtab.jl/stable/Define_in_julia/).
77
76
-[GlobalSensitivity.jl](https://github.com/SciML/GlobalSensitivity.jl) can be used to perform [global sensitivity analysis](https://docs.sciml.ai/Catalyst/stable/inverse_problems/global_sensitivity_analysis/) of model behaviors.
78
77
-[SciMLSensitivity.jl](https://github.com/SciML/SciMLSensitivity.jl) can be used to compute local sensitivities of functions containing forward model simulations.
78
+
<!-- - [StructuralIdentifiability.jl](https://github.com/SciML/StructuralIdentifiability.jl) can be used to [perform structural identifiability analysis](https://docs.sciml.ai/Catalyst/stable/inverse_problems/structural_identifiability/). -->
79
79
80
80
#### Features of packages built upon Catalyst
81
81
- Catalyst [`ReactionSystem`](@ref)s can be [imported from SBML files](https://docs.sciml.ai/Catalyst/stable/model_creation/model_file_loading_and_export/#Loading-SBML-files-using-SBMLImporter.jl-and-SBMLToolkit.jl) via [SBMLImporter.jl](https://github.com/sebapersson/SBMLImporter.jl) and [SBMLToolkit.jl](https://github.com/SciML/SBMLToolkit.jl), and [from BioNetGen .net files](https://docs.sciml.ai/Catalyst/stable/model_creation/model_file_loading_and_export/#file_loading_rni_net) and various stoichiometric matrix network representations using [ReactionNetworkImporters.jl](https://github.com/SciML/ReactionNetworkImporters.jl).
Copy file name to clipboardExpand all lines: docs/src/index.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -41,10 +41,10 @@ etc).
41
41
- Model steady states can be [computed through homotopy continuation](@ref homotopy_continuation) using [HomotopyContinuation.jl](https://github.com/JuliaHomotopyContinuation/HomotopyContinuation.jl) (which can find *all* steady states of systems with multiple ones), by [forward ODE simulations](@ref steady_state_solving_simulation) using [SteadyStateDiffEq.jl)](https://github.com/SciML/SteadyStateDiffEq.jl), or by [numerically solving steady-state nonlinear equations](@ref steady_state_solving_nonlinear) using [NonlinearSolve.jl](https://github.com/SciML/NonlinearSolve.jl).
42
42
[BifurcationKit.jl](https://github.com/bifurcationkit/BifurcationKit.jl) can be used to compute bifurcation diagrams of model steady states (including finding periodic orbits).
43
43
-[DynamicalSystems.jl](https://github.com/JuliaDynamics/DynamicalSystems.jl) can be used to compute model [basins of attraction](@ref dynamical_systems_basins_of_attraction), [Lyapunov spectrums](@ref dynamical_systems_lyapunov_exponents), and other dynamical system properties.
44
-
<!--- [StructuralIdentifiability.jl](https://github.com/SciML/StructuralIdentifiability.jl) can be used to perform structural identifiability analysis.-->
45
44
-[Optimization.jl](https://github.com/SciML/Optimization.jl), [DiffEqParamEstim.jl](https://github.com/SciML/DiffEqParamEstim.jl), and [PEtab.jl](https://github.com/sebapersson/PEtab.jl) can all be used to [fit model parameters to data](https://sebapersson.github.io/PEtab.jl/stable/Define_in_julia/).
46
45
-[GlobalSensitivity.jl](https://github.com/SciML/GlobalSensitivity.jl) can be used to perform [global sensitivity analysis](@ref global_sensitivity_analysis) of model behaviors.
47
46
-[SciMLSensitivity.jl](https://github.com/SciML/SciMLSensitivity.jl) can be used to compute local sensitivities of functions containing forward model simulations.
47
+
<!--- [StructuralIdentifiability.jl](https://github.com/SciML/StructuralIdentifiability.jl) can be used to perform structural identifiability analysis.-->
48
48
49
49
#### [Features of packages built upon Catalyst](@id doc_index_features_other_packages)
50
50
- Catalyst [`ReactionSystem`](@ref)s can be [imported from SBML files](@ref model_file_import_export_sbml) via [SBMLImporter.jl](https://github.com/sebapersson/SBMLImporter.jl) and [SBMLToolkit.jl](https://github.com/SciML/SBMLToolkit.jl), and [from BioNetGen .net files](@ref model_file_import_export_sbml_rni_net) and various stoichiometric matrix network representations using [ReactionNetworkImporters.jl](https://github.com/SciML/ReactionNetworkImporters.jl).
Return the negative of the graph Laplacian of the reaction network. The ODE system of a chemical reaction network can be factorized as ``\frac{dx}{dt} = Y A_k Φ(x)``, where ``Y`` is the [`complexstoichmat`](@ref) and ``A_k`` is the negative of the graph Laplacian, and ``Φ`` is the [`massactionvector`](@ref). ``A_k`` is an n-by-n matrix, where n is the number of complexes, where ``A_{ij} = k_{ij}`` if a reaction exists between the two complexes and 0 otherwise.
199
+
Returns a symbolic matrix by default, but will return a numerical matrix if parameter values are specified via pmap.
200
+
201
+
**Warning**: Unlike other Catalyst functions, the `laplacianmat` function will return a `Matrix{Num}` in the symbolic case. This is to allow easier computation of the matrix decomposition of the ODEs, and to ensure that multiplying the sparse form of the matrix will work.
Return an r×c matrix ``K`` such that, if complex ``j`` is the substrate complex of reaction ``i``, then ``K_{ij} = k``, the rate constant for this reaction. Mostly a helper function for the network Laplacian, [`laplacianmat`](@ref). Has the useful property that ``\frac{dx}{dt} = S*K*Φ(x)``, where S is the [`netstoichmat`](@ref) or net stoichiometry matrix and ``Φ(x)`` is the [`massactionvector`](@ref).
216
+
Returns a symbolic matrix by default, but will return a numerical matrix if rate constants are specified as a `Tuple`, `Vector`, or `Dict` of symbol-value pairs via `pmap`.
217
+
218
+
**Warning**: Unlike other Catalyst functions, the `fluxmat` function will return a `Matrix{Num}` in the symbolic case. This is to allow easier computation of the matrix decomposition of the ODEs, and to ensure that multiplying the sparse form of the matrix will work.
functionfluxmat(::Type{SparseMatrixCSC{T, Int}}, rcmap, rates) where T
239
+
Is = Int[]
240
+
Js = Int[]
241
+
Vs = T[]
242
+
for (i, (complex, rxs)) inenumerate(rcmap)
243
+
for (rx, dir) in rxs
244
+
dir ==-1&&begin
245
+
push!(Is, rx)
246
+
push!(Js, i)
247
+
push!(Vs, rates[rx])
248
+
end
249
+
end
250
+
end
251
+
Z =sparse(Is, Js, Vs, length(rates), length(rcmap))
252
+
end
253
+
254
+
functionfluxmat(::Type{Matrix{T}}, rcmap, rates) where T
255
+
nr =length(rates)
256
+
nc =length(rcmap)
257
+
K =zeros(T, nr, nc)
258
+
for (i, (complex, rxs)) inenumerate(rcmap)
259
+
for (rx, dir) in rxs
260
+
dir ==-1&& (K[rx, i] = rates[rx])
261
+
end
262
+
end
263
+
K
264
+
end
265
+
266
+
functionfluxmat(rn::ReactionSystem, pmap::Vector)
267
+
pdict =Dict(pmap)
268
+
fluxmat(rn, pdict)
269
+
end
270
+
271
+
functionfluxmat(rn::ReactionSystem, pmap::Tuple)
272
+
pdict =Dict(pmap)
273
+
fluxmat(rn, pdict)
274
+
end
275
+
276
+
# Helper to substitute values into a (vector of) symbolic expressions. The syms are the symbols to substitute and the symexprs are the expressions to substitute into.
Return the vector whose entries correspond to the "mass action products" of each complex. For example, given the complex A + B, the corresponding entry of the vector would be ``A*B``, and for the complex 2X + Y, the corresponding entry would be ``X^2*Y``. The ODE system of a chemical reaction network can be factorized as ``\frac{dx}{dt} = Y A_k Φ(x)``, where ``Y`` is the [`complexstoichmat`](@ref) and ``A_k`` is the negative of the [`laplacianmat`](@ref). This utility returns ``Φ(x)``.
288
+
Returns a symbolic vector by default, but will return a numerical vector if species concentrations are specified as a tuple, vector, or dictionary via scmap.
289
+
If the `combinatoric_ratelaws` option is set, will include prefactors for that (see [introduction to Catalyst's rate laws](@ref introduction_to_catalyst_ratelaws). Will default to the default for the system.
290
+
291
+
**Warning**: Unlike other Catalyst functions, the `massactionvector` function will return a `Vector{Num}` in the symbolic case. This is to allow easier computation of the matrix decomposition of the ODEs.
error("The supplied ReactionSystem has reactions that are not ismassaction. Testing for being complex balanced is currently only supported for pure mass action networks.")
927
+
error("The supplied ReactionSystem has reactions that are not ismassaction. Testing for being detailed balanced is currently only supported for pure mass action networks.")
0 commit comments