|
131 | 131 | if nameof(rn_catalyst) != :rnc9
|
132 | 132 | sprob_1 = SDEProblem(rn_catalyst, u0_1, (0.0, 1.0), ps_1)
|
133 | 133 | sprob_2 = SDEProblem(rn_manual.f, rn_manual.g, u0_2, (0.0, 1.0), ps_2; noise_rate_prototype = rn_manual.nrp)
|
134 |
| - sol1 = solve(sprob_1, ImplicitEM(); seed = rand(rng, 100)) |
135 |
| - sol2 = solve(sprob_2, ImplicitEM(); seed = rand(rng, 100)) |
| 134 | + sol1 = solve(sprob_1, ImplicitEM(); seed = rand(rng, 1:100)) |
| 135 | + sol2 = solve(sprob_2, ImplicitEM(); seed = rand(rng, 1:100)) |
136 | 136 | @test sol1[u0_sym] ≈ sol2.u
|
137 | 137 | end
|
138 | 138 | end
|
|
198 | 198 | sprob_1_2 = SDEProblem(noise_scaling_network_1, u0, (0.0, 1000.0), [:k1 => 2.0, :k2 => 0.66, :η1 => 2.0, :η2 => 0.2])
|
199 | 199 | sprob_1_3 = SDEProblem(noise_scaling_network_1, u0, (0.0, 1000.0), [:k1 => 2.0, :k2 => 0.66, :η1 => 0.2, :η2 => 0.2])
|
200 | 200 | for repeat in 1:5
|
201 |
| - sol_1_1 = solve(sprob_1_1, ImplicitEM(); saveat=1.0, seed = rand(rng, 100)) |
202 |
| - sol_1_2 = solve(sprob_1_2, ImplicitEM(); saveat=1.0, seed = rand(rng, 100)) |
203 |
| - sol_1_3 = solve(sprob_1_3, ImplicitEM(); saveat=1.0, seed = rand(rng, 100)) |
| 201 | + sol_1_1 = solve(sprob_1_1, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
| 202 | + sol_1_2 = solve(sprob_1_2, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
| 203 | + sol_1_3 = solve(sprob_1_3, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
204 | 204 | @test var(sol_1_1[:X1]) > var(sol_1_2[:X1]) > var(sol_1_3[:X1])
|
205 | 205 | end
|
206 | 206 |
|
|
214 | 214 | sprob_2_2 = SDEProblem(noise_scaling_network_2, u0, (0.0, 1000.0), [k1 => 2.0, k2 => 0.66, η[1] => 2.0, η[2] => 0.2])
|
215 | 215 | sprob_2_3 = SDEProblem(noise_scaling_network_2, u0, (0.0, 1000.0), [k1 => 2.0, k2 => 0.66, η[1] => 0.2, η[2] => 0.2])
|
216 | 216 | for repeat in 1:5
|
217 |
| - sol_2_1 = solve(sprob_2_1, ImplicitEM(); saveat=1.0, seed = rand(rng, 100)) |
218 |
| - sol_2_2 = solve(sprob_2_2, ImplicitEM(); saveat=1.0, seed = rand(rng, 100)) |
219 |
| - sol_2_3 = solve(sprob_2_3, ImplicitEM(); saveat=1.0, seed = rand(rng, 100)) |
| 217 | + sol_2_1 = solve(sprob_2_1, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
| 218 | + sol_2_2 = solve(sprob_2_2, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
| 219 | + sol_2_3 = solve(sprob_2_3, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
220 | 220 | @test var(sol_2_1[:X1]) > var(sol_2_2[:X1]) > var(sol_2_3[:X1])
|
221 | 221 | end
|
222 | 222 | end
|
|
274 | 274 | sprob = SDEProblem(noise_scaling_network, u0, (0.0, 1000.0), ps)
|
275 | 275 |
|
276 | 276 | for repeat in 1:5
|
277 |
| - sol = solve(sprob, ImplicitEM(); saveat=1.0, seed = rand(rng, 100)) |
| 277 | + sol = solve(sprob, ImplicitEM(); saveat=1.0, seed = rand(rng, 1:100)) |
278 | 278 | @test var(sol[:X1]) < var(sol[:X2])
|
279 | 279 | @test var(sol[:X1]) < var(sol[:X3])
|
280 | 280 | end
|
|
298 | 298 | u0 = [:X1 => 1000.0, :X2 => 1000.0, :X3 => 1000.0, :X4 => 1000.0, :X5 => 1000.0, :N1 => 3.0, :N3 => 0.33]
|
299 | 299 | ps = [:p => 1000.0, :d => 1.0, :η1 => 1.0, :η2 => 1.4, :η3 => 0.33, :η4 => 4.0]
|
300 | 300 | sprob = SDEProblem(noise_scaling_network, u0, (0.0, 1000.0), ps)
|
301 |
| - |
| 301 | + |
302 | 302 | for repeat in 1:5
|
303 |
| - sol = solve(sprob, ImplicitEM(); saveat=1.0, adaptive=false, dt=0.1, seed = rand(rng, 100)) |
| 303 | + sol = solve(sprob, ImplicitEM(); saveat=1.0, adaptive=false, dt=0.1, seed = rand(rng, 1:100)) |
304 | 304 | @test var(sol[:X1]) > var(sol[:X2]) > var(sol[:X3]) > var(sol[:X4]) > var(sol[:X5])
|
305 | 305 | end
|
306 | 306 | end
|
|
356 | 356 | u0 = rnd_u0(no_param_network, rng; factor)
|
357 | 357 | sprob = SDEProblem(no_param_network, u0, (0.0, 1000.0))
|
358 | 358 | for repeat in 1:5
|
359 |
| - sol = solve(sprob, ImplicitEM(); seed = rand(rng, 100)) |
| 359 | + sol = solve(sprob, ImplicitEM(); seed = rand(rng, 1:100)) |
360 | 360 | @test mean(sol[:X1]) > mean(sol[:X2])
|
361 | 361 | end
|
362 | 362 | end
|
|
0 commit comments