Skip to content

Commit 351e677

Browse files
TorkelEisaacsas
andcommitted
Update docs/src/inverse_problems/optimization_ode_param_fitting.md
Co-authored-by: Sam Isaacson <[email protected]>
1 parent 8b37005 commit 351e677

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

docs/src/inverse_problems/optimization_ode_param_fitting.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ nothing # hide
6262
!!! note
6363
`OptimizationProblem` cannot currently accept parameter values in the form of a map (e.g. `[:kB => 1.0, :kD => 1.0, :kP => 1.0]`). These must be provided as individual values (using the same order as the parameters occur in in the `parameters(rs)` vector). Similarly, `build_loss_objective`'s `save_idxs` uses the species index, rather than the species directly. These inconsistencies should be remedied in future package releases.
6464

65-
Finally, we can optimise `optprob` to find the parameter set that best fits our data. Optimization.jl only provide a few optimisation methods natively. However, for each supported optimisation package, it provides a corresponding wrapper-package to import that optimisation package for use with Optimization.jl. E.g., if we wish to use [Optim.jl](https://github.com/JuliaNLSolvers/Optim.jl)'s [Nelder-Mead](https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method) method, we must install and import the OptimizationOptimJL package. A summary of all, by Optimization.jl, supported optimisation packages can be found [here](https://docs.sciml.ai/Optimization/stable/#Overview-of-the-Optimizers). Here, we import the Optim.jl package and uses it to minimise our cost function (thus finding a parameter set that fits the data):
65+
Finally, we can optimise `optprob` to find the parameter set that best fits our data. Optimization.jl only provides a few optimisation methods natively. However, for each supported optimisation package, it provides a corresponding wrapper-package to import that optimisation package for use with Optimization.jl. E.g., if we wish to use [Optim.jl](https://github.com/JuliaNLSolvers/Optim.jl)'s [Nelder-Mead](https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method) method, we must install and import the OptimizationOptimJL package. A summary of all, by Optimization.jl, supported optimisation packages can be found [here](https://docs.sciml.ai/Optimization/stable/#Overview-of-the-Optimizers). Here, we import the Optim.jl package and uses it to minimise our cost function (thus finding a parameter set that fits the data):
6666
```@example diffeq_param_estim_1
6767
using OptimizationOptimJL
6868
optsol = solve(optprob, Optim.NelderMead())

0 commit comments

Comments
 (0)