You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Where `PALC()` designates that we wish to use the pseudo arclength continuation method to track our solution. The third argument (`2`) designates the maximum number of recursions when branches of branches are computed (branches appear as continuation encounters certain bifurcation points). For diagrams with highly branched structures (rare for many common small chemical reaction networks) this input is important. Finally, `bothside = true` designates that we wish to perform continuation on both sides of the initial point (which is typically the case).
Here, in the bistable region, we only see a single branch. The reason is that the continuation algorithm starts at our initial guess (here made at $k1 = 4.0$ for $(X,Y) = (5.0,2.0)$) and tracks the diagram from there. However, with the upper bound set at $k1=15.0$ the bifurcation diagram has a disjoint branch structure, preventing the full diagram from being computed by continuation alone. In this case it could be solved by increasing the bound from $k1=15.0$, however, this is not possible in all cases. In these cases, *deflation* can be used. This is described in the [BifurcationKit documentation](https://bifurcationkit.github.io/BifurcationKitDocs.jl/dev/tutorials/tutorials2/#Snaking-computed-with-deflation).
This bifurcation diagram does not contain any interesting features (such as bifurcation points), and only shows how the steady state concentration of $Xp$ is reduced as $d$ increases.
0 commit comments