Skip to content

Commit 83d2470

Browse files
committed
up
1 parent c36cbb9 commit 83d2470

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

docs/src/inverse_problems/petab_ode_param_fitting.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -134,10 +134,10 @@ PEtab.jl also supports [multistart optimisation](@ref petab_multistart_optimisat
134134
It is possible for observables to be any algebraic expression of species concentrations and parameters. E.g. in this example the total amount of `X` in the system is an observable:
135135
```@example petab2
136136
using Catalyst, PEtab # hide
137-
rn = @reaction_network begin
137+
two_state_model = @reaction_network begin
138138
(k1,k2), X1 <--> X2
139139
end
140-
@unpack X1, X2 = rn
140+
@unpack X1, X2 = two_state_model
141141
obs_X = PEtabObservable(X1 + X2, 0.5)
142142
```
143143

@@ -172,7 +172,7 @@ nothing # hide
172172
```
173173
We then provide `parameter_map=[:kB => 1.0]` when we assembly our model:
174174
```@example petab1
175-
petab_model = PEtabModel(rn, observables, measurements, params; state_map=u0, parameter_map=[:kB => 1.0])
175+
petab_model_known_param = PEtabModel(rn, observables, measurements, params; state_map=u0, parameter_map=[:kB => 1.0])
176176
nothing # hide
177177
```
178178

@@ -380,10 +380,10 @@ While in our basic example, we do not provide any additional information to our
380380

381381
Here is an example, taken from the [more detailed PEtab.jl documentation](https://sebapersson.github.io/PEtab.jl/dev/Boehm/#Creating-a-PEtabODEProblem)
382382
```@example petab1
383-
petab_problem = PEtabODEProblem(petab_model,
384-
ode_solver=ODESolver(Rodas5P(), abstol=1e-8, reltol=1e-8),
385-
gradient_method=:ForwardDiff,
386-
hessian_method=:ForwardDiff)
383+
PEtabODEProblem(petab_model,
384+
ode_solver=ODESolver(Rodas5P(), abstol=1e-8, reltol=1e-8),
385+
gradient_method=:ForwardDiff,
386+
hessian_method=:ForwardDiff)
387387
nothing # hide
388388
```
389389
where we simulate our ODE model using the `Rodas5p` method (with absolute and relative tolerance both equal `1e-8`) and use [forward automatic differentiation](https://github.com/JuliaDiff/ForwardDiff.jl) for both gradient and hessian computation. More details on available ODE solver options can be found in [the PEtab.jl documentation](https://sebapersson.github.io/PEtab.jl/dev/API_choosen/#PEtab.ODESolver).

0 commit comments

Comments
 (0)