@@ -7,7 +7,7 @@ use symbolic stoichiometries, and discuss several caveats to be aware of.
7
7
Let's first consider a simple reversible reaction where the number of reactants
8
8
is a parameter, and the number of products is the product of two parameters.
9
9
``` @example s1
10
- using Catalyst, Latexify, DifferentialEquations , ModelingToolkit, Plots
10
+ using Catalyst, Latexify, OrdinaryDiffEq , ModelingToolkit, Plots
11
11
revsys = @reaction_network revsys begin
12
12
k₊, m*A --> (m*n)*B
13
13
k₋, B --> A
@@ -58,6 +58,7 @@ stoichiometries `(F,2*H,2)`.
58
58
Let's now convert ` revsys ` to ODEs and look at the resulting equations:
59
59
``` @example s1
60
60
osys = convert(ODESystem, revsys)
61
+ osys = complete(osys)
61
62
equations(osys)
62
63
show(stdout, MIME"text/plain"(), equations(osys)) # hide
63
64
```
@@ -88,6 +89,7 @@ converting to an `ODESystem`). For the previous example this gives the following
88
89
(different) system of ODEs
89
90
``` @example s1
90
91
osys = convert(ODESystem, revsys; combinatoric_ratelaws = false)
92
+ osys = complete(osys)
91
93
equations(osys)
92
94
show(stdout, MIME"text/plain"(), equations(osys)) # hide
93
95
```
@@ -139,7 +141,9 @@ The parameter `b` does not need to be explicitly declared in the
139
141
140
142
We next convert our network to a jump process representation
141
143
``` @example s1
144
+ using JumpProcesses
142
145
jsys = convert(JumpSystem, burstyrn; combinatoric_ratelaws = false)
146
+ jsys = complete(jsys)
143
147
equations(jsys)
144
148
show(stdout, MIME"text/plain"(), equations(jsys)) # hide
145
149
```
0 commit comments