You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Next, we create our model, [interpolating](@ref dsl_advanced_options_symbolics_and_DSL_interpolation) the input parameter into it (making it a function of `t`).
17
+
Next, we create our model, [interpolating](@ref dsl_advanced_options_symbolics_and_DSL_interpolation) the input parameter into the `@reaction_network` declaration.
18
18
```@example functional_parameters_basic_example
19
-
input = pIn(default_t())
20
19
bd_model = @reaction_network begin
21
-
$input, 0 --> X
20
+
$pIn(t), 0 --> X
22
21
d, X --> 0
23
22
end
24
23
```
@@ -76,11 +75,10 @@ plot(sol)
76
75
```
77
76
78
77
### [Interpolating the input into the DSL](@id functional_parameters_circ_rhythm_dsl)
79
-
It is possible to use time-dependent inputs when creating models [through the DSL](@ref dsl_description) as well. However, it can still be convenient to declare the input parameter programmatically as above. Using it, we form an expression of it as a function of time, and then [interpolate](@ref dsl_advanced_options_symbolics_and_DSL_interpolation) it into our DSL-declaration:
78
+
It is possible to use time-dependent inputs when creating models [through the DSL](@ref dsl_description) as well. However, it can still be convenient to declare the input parameter programmatically as above. Next, we can [interpolate](@ref dsl_advanced_options_symbolics_and_DSL_interpolation) it into our DSL-declaration (ensuring to also make it a function of `t`):
80
79
```@example functional_parameters_circ_rhythm
81
-
input = light_in(t)
82
80
rs_dsl = @reaction_network rs begin
83
-
(kA*$input, kD), Pᵢ <--> Pₐ
81
+
(kA*$light_in(t), kD), Pᵢ <--> Pₐ
84
82
end
85
83
```
86
84
We can confirm that this model is identical to our programmatic one (and should we wish to, we can simulate it using identical syntax).
0 commit comments