@@ -12,9 +12,9 @@ We first import the basic packages we'll need:
12
12
13
13
``` @example tut1
14
14
# If not already installed, first hit "]" within a Julia REPL. Then type:
15
- # add Catalyst DifferentialEquations Plots Latexify
15
+ # add Catalyst OrdinaryDiffEq Plots Latexify
16
16
17
- using Catalyst, DifferentialEquations , Plots, Latexify
17
+ using Catalyst, OrdinaryDiffEq , Plots, Latexify
18
18
```
19
19
20
20
We now construct the reaction network. The basic types of arrows and predefined
@@ -160,7 +160,7 @@ underlying problem.
160
160
161
161
At this point we are all set to solve the ODEs. We can now use any ODE solver
162
162
from within the
163
- [ DifferentialEquations .jl] ( https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/ )
163
+ [ OrdinaryDiffEq .jl] ( https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/ )
164
164
package. We'll use the recommended default explicit solver, ` Tsit5() ` , and then
165
165
plot the solutions:
166
166
@@ -169,7 +169,7 @@ sol = solve(oprob, Tsit5(), saveat=10.)
169
169
plot(sol)
170
170
```
171
171
We see the well-known oscillatory behavior of the repressilator! For more on the
172
- choices of ODE solvers, see the [ DifferentialEquations .jl
172
+ choices of ODE solvers, see the [ OrdinaryDiffEq .jl
173
173
documentation] ( https://docs.sciml.ai/DiffEqDocs/stable/solvers/ode_solve/ ) .
174
174
175
175
---
@@ -182,6 +182,9 @@ Gillespie's `Direct` method, and then solve it to generate one realization of
182
182
the jump process:
183
183
184
184
``` @example tut1
185
+ # imports the JumpProcesses packages
186
+ using JumpProcesses
187
+
185
188
# redefine the initial condition to be integer valued
186
189
u₀map = [:m₁ => 0, :m₂ => 0, :m₃ => 0, :P₁ => 20, :P₂ => 0, :P₃ => 0]
187
190
@@ -237,6 +240,9 @@ model by creating an `SDEProblem` and solving it similarly to what we did for OD
237
240
above:
238
241
239
242
``` @example tut1
243
+ # imports the StochasticDiffEq package for SDE simulations
244
+ using StochasticDiffEq
245
+
240
246
# SDEProblem for CLE
241
247
sprob = SDEProblem(bdp, u₀, tspan, p)
242
248
0 commit comments