Skip to content

Commit f83cdf3

Browse files
committed
drop new test
1 parent cd27113 commit f83cdf3

File tree

1 file changed

+39
-39
lines changed

1 file changed

+39
-39
lines changed

test/extensions/bifurcation_kit.jl

Lines changed: 39 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -233,42 +233,42 @@ let
233233
end
234234

235235
# Tests the bifurcation when one of the parameters depends on another parameter, initial condition, etc.
236-
let
237-
rn = @reaction_network begin
238-
@parameters k ksq = k^2 ratechange
239-
(k, ksq), A <--> B
240-
end
241-
242-
rn = complete(rn)
243-
u0_guess = [:A => 1., :B => 1.]
244-
p_start = [:k => 2.]
245-
246-
bprob = BifurcationProblem(rn, u0_guess, p_start, :k; plot_var = :A, u0 = [:A => 5., :B => 3.])
247-
p_span = (0.1, 6.0)
248-
opts_br = ContinuationPar(dsmin = 0.0001, dsmax = 0.001, ds = 0.0001, max_steps = 10000, p_min = p_span[1], p_max = p_span[2], n_inversion = 4)
249-
bif_dia = bifurcationdiagram(bprob, PALC(), 2, (args...) -> opts_br; bothside = true)
250-
plot(bif_dia, xlabel = "k", ylabel = "A", xlims = (0, 6), ylims=(0,8))
251-
252-
xs = getfield.(bif_dia.γ.branch, :x)
253-
ks = getfield.(bif_dia.γ.branch, :param)
254-
@test_broken @. 8 * (ks / (ks + ks^2)) xs
255-
256-
# Test that parameter updating happens correctly in ODESystem
257-
t = default_t()
258-
kval = 4.
259-
@parameters k ksq = k^2 tratechange = 10.
260-
@species A(t) B(t)
261-
rxs = [(@reaction k, A --> B), (@reaction ksq, B --> A)]
262-
ratechange = (t == tratechange) => [k ~ kval]
263-
u0 = [A => 5., B => 3.]
264-
tspan = (0.0, 30.0)
265-
p = [k => 1.0]
266-
267-
@named rs2 = ReactionSystem(rxs, t, [A, B], [k, ksq, tratechange]; discrete_events = ratechange)
268-
rs2 = complete(rs2)
269-
270-
oprob = ODEProblem(rs2, u0, tspan, p)
271-
sol = OrdinaryDiffEq.solve(oprob, Tsit5(); tstops = 10.0)
272-
xval = sol.u[end][1]
273-
@test isapprox(xval, 8 * (kval / (kval + kval^2)), atol=1e-3)
274-
end
236+
# let
237+
# rn = @reaction_network begin
238+
# @parameters k ksq = k^2
239+
# (k, ksq), A <--> B
240+
# end
241+
242+
# rn = complete(rn)
243+
# u0_guess = [:A => 1., :B => 1.]
244+
# p_start = [:k => 2.]
245+
246+
# bprob = BifurcationProblem(rn, u0_guess, p_start, :k; plot_var = :A, u0 = [:A => 5., :B => 3.])
247+
# p_span = (0.1, 6.0)
248+
# opts_br = ContinuationPar(dsmin = 0.0001, dsmax = 0.001, ds = 0.0001, max_steps = 10000, p_min = p_span[1], p_max = p_span[2], n_inversion = 4)
249+
# bif_dia = bifurcationdiagram(bprob, PALC(), 2, (args...) -> opts_br; bothside = true)
250+
# plot(bif_dia, xlabel = "k", ylabel = "A", xlims = (0, 6), ylims=(0,8))
251+
252+
# xs = getfield.(bif_dia.γ.branch, :x)
253+
# ks = getfield.(bif_dia.γ.branch, :param)
254+
# @test_broken @. 8 * (ks / (ks + ks^2)) ≈ xs
255+
256+
# # Test that parameter updating happens correctly in ODESystem
257+
# t = default_t()
258+
# kval = 4.
259+
# @parameters k ksq = k^2 tratechange = 10.
260+
# @species A(t) B(t)
261+
# rxs = [(@reaction k, A --> B), (@reaction ksq, B --> A)]
262+
# ratechange = (t == tratechange) => [k ~ kval]
263+
# u0 = [A => 5., B => 3.]
264+
# tspan = (0.0, 30.0)
265+
# p = [k => 1.0]
266+
267+
# @named rs2 = ReactionSystem(rxs, t, [A, B], [k, ksq, tratechange]; discrete_events = ratechange)
268+
# rs2 = complete(rs2)
269+
270+
# oprob = ODEProblem(rs2, u0, tspan, p)
271+
# sol = OrdinaryDiffEq.solve(oprob, Tsit5(); tstops = 10.0)
272+
# xval = sol.u[end][1]
273+
# @test isapprox(xval, 8 * (kval / (kval + kval^2)), atol=1e-3)
274+
# end

0 commit comments

Comments
 (0)