@@ -233,42 +233,42 @@ let
233
233
end
234
234
235
235
# Tests the bifurcation when one of the parameters depends on another parameter, initial condition, etc.
236
- let
237
- rn = @reaction_network begin
238
- @parameters k ksq = k^ 2 ratechange
239
- (k, ksq), A <--> B
240
- end
241
-
242
- rn = complete (rn)
243
- u0_guess = [:A => 1. , :B => 1. ]
244
- p_start = [:k => 2. ]
245
-
246
- bprob = BifurcationProblem (rn, u0_guess, p_start, :k ; plot_var = :A , u0 = [:A => 5. , :B => 3. ])
247
- p_span = (0.1 , 6.0 )
248
- opts_br = ContinuationPar (dsmin = 0.0001 , dsmax = 0.001 , ds = 0.0001 , max_steps = 10000 , p_min = p_span[1 ], p_max = p_span[2 ], n_inversion = 4 )
249
- bif_dia = bifurcationdiagram (bprob, PALC (), 2 , (args... ) -> opts_br; bothside = true )
250
- plot (bif_dia, xlabel = " k" , ylabel = " A" , xlims = (0 , 6 ), ylims= (0 ,8 ))
251
-
252
- xs = getfield .(bif_dia. γ. branch, :x )
253
- ks = getfield .(bif_dia. γ. branch, :param )
254
- @test_broken @. 8 * (ks / (ks + ks^ 2 )) ≈ xs
255
-
256
- # Test that parameter updating happens correctly in ODESystem
257
- t = default_t ()
258
- kval = 4.
259
- @parameters k ksq = k^ 2 tratechange = 10.
260
- @species A (t) B (t)
261
- rxs = [(@reaction k, A --> B), (@reaction ksq, B --> A)]
262
- ratechange = (t == tratechange) => [k ~ kval]
263
- u0 = [A => 5. , B => 3. ]
264
- tspan = (0.0 , 30.0 )
265
- p = [k => 1.0 ]
266
-
267
- @named rs2 = ReactionSystem (rxs, t, [A, B], [k, ksq, tratechange]; discrete_events = ratechange)
268
- rs2 = complete (rs2)
269
-
270
- oprob = ODEProblem (rs2, u0, tspan, p)
271
- sol = OrdinaryDiffEq. solve (oprob, Tsit5 (); tstops = 10.0 )
272
- xval = sol. u[end ][1 ]
273
- @test isapprox (xval, 8 * (kval / (kval + kval^ 2 )), atol= 1e-3 )
274
- end
236
+ # let
237
+ # rn = @reaction_network begin
238
+ # @parameters k ksq = k^2
239
+ # (k, ksq), A <--> B
240
+ # end
241
+
242
+ # rn = complete(rn)
243
+ # u0_guess = [:A => 1., :B => 1.]
244
+ # p_start = [:k => 2.]
245
+
246
+ # bprob = BifurcationProblem(rn, u0_guess, p_start, :k; plot_var = :A, u0 = [:A => 5., :B => 3.])
247
+ # p_span = (0.1, 6.0)
248
+ # opts_br = ContinuationPar(dsmin = 0.0001, dsmax = 0.001, ds = 0.0001, max_steps = 10000, p_min = p_span[1], p_max = p_span[2], n_inversion = 4)
249
+ # bif_dia = bifurcationdiagram(bprob, PALC(), 2, (args...) -> opts_br; bothside = true)
250
+ # plot(bif_dia, xlabel = "k", ylabel = "A", xlims = (0, 6), ylims=(0,8))
251
+
252
+ # xs = getfield.(bif_dia.γ.branch, :x)
253
+ # ks = getfield.(bif_dia.γ.branch, :param)
254
+ # @test_broken @. 8 * (ks / (ks + ks^2)) ≈ xs
255
+
256
+ # # Test that parameter updating happens correctly in ODESystem
257
+ # t = default_t()
258
+ # kval = 4.
259
+ # @parameters k ksq = k^2 tratechange = 10.
260
+ # @species A(t) B(t)
261
+ # rxs = [(@reaction k, A --> B), (@reaction ksq, B --> A)]
262
+ # ratechange = (t == tratechange) => [k ~ kval]
263
+ # u0 = [A => 5., B => 3.]
264
+ # tspan = (0.0, 30.0)
265
+ # p = [k => 1.0]
266
+
267
+ # @named rs2 = ReactionSystem(rxs, t, [A, B], [k, ksq, tratechange]; discrete_events = ratechange)
268
+ # rs2 = complete(rs2)
269
+
270
+ # oprob = ODEProblem(rs2, u0, tspan, p)
271
+ # sol = OrdinaryDiffEq.solve(oprob, Tsit5(); tstops = 10.0)
272
+ # xval = sol.u[end][1]
273
+ # @test isapprox(xval, 8 * (kval / (kval + kval^2)), atol=1e-3)
274
+ # end
0 commit comments