1- @inline function gpu_simple_trustregion_solve (f, u0, abstol, reltol, maxiters)
2- u = copy (u0)
3- radius = eltype (u0)(1.0 )
4- shrink_factor = eltype (u0)(0.25 )
5- expand_factor = eltype (u0)(2.0 )
6- radius_update_tol = eltype (u0)(0.1 )
7-
8- fu = f (u)
9- norm_fu = norm (fu)
10-
11- if norm_fu <= abstol
12- return u, true
13- end
14-
15- for k in 1 : maxiters
16- try
17- J = finite_difference_jacobian (f, u)
18-
19- # Trust region subproblem: min ||J*s + fu||^2 s.t. ||s|| <= radius
20- s = if norm (fu) <= radius
21- # Gauss-Newton step is within trust region
22- - linear_solve (J, fu)
23- else
24- # Constrained step - use scaled Gauss-Newton direction
25- gn_step = - linear_solve (J, fu)
26- (radius / norm (gn_step)) * gn_step
27- end
28-
29- u_new = u + s
30- fu_new = f (u_new)
31- norm_fu_new = norm (fu_new)
32-
33- # Compute actual vs predicted reduction
34- pred_reduction = norm_fu^ 2 - norm (J * s + fu)^ 2
35- actual_reduction = norm_fu^ 2 - norm_fu_new^ 2
36-
37- if pred_reduction > 0
38- ratio = actual_reduction / pred_reduction
39-
40- if ratio > radius_update_tol
41- u = u_new
42- fu = fu_new
43- norm_fu = norm_fu_new
44-
45- if norm_fu <= abstol
46- return u, true
47- end
48-
49- if ratio > 0.75 && norm (s) > 0.8 * radius
50- radius = min (expand_factor * radius, eltype (u0)(10.0 ))
51- end
52- else
53- radius *= shrink_factor
54- end
55- else
56- radius *= shrink_factor
57- end
58-
59- if radius < sqrt (eps (eltype (u0)))
60- break
61- end
62- catch
63- # If linear solve fails, reduce radius and continue
64- radius *= shrink_factor
65- if radius < sqrt (eps (eltype (u0)))
66- break
67- end
68- end
69- end
70-
71- return u, norm_fu <= abstol
72- end
73-
74- @inline function finite_difference_jacobian (f, u)
75- n = length (u)
76- J = zeros (eltype (u), n, n)
77- h = sqrt (eps (eltype (u)))
78-
79- f0 = f (u)
80-
81- for i in 1 : n
82- u_pert = copy (u)
83- u_pert[i] += h
84- f_pert = f (u_pert)
85- J[:, i] = (f_pert - f0) / h
86- end
87-
88- return J
89- end
90-
911@inline function gpu_initialization_solve (prob, nlsolve_alg, abstol, reltol)
922 f = prob. f
933 u0 = prob. u0
944 p = prob. p
95-
5+
966 # Check if initialization is actually needed
977 if ! SciMLBase. has_initialization_data (f) || f. initialization_data === nothing
988 return u0, p, true
999 end
100-
101- # For now, skip GPU initialization and return original values
102- # This is a placeholder - the actual initialization would be complex
103- # to implement correctly for all MTK edge cases
104- return u0, p, true
105- end
10+
11+ initdata = f. initialization_data
12+ if initdata. initializeprob === nothing
13+ return u0, p, true
14+ end
15+
16+ # Use SimpleNonlinearSolve directly - it's GPU compatible
17+ try
18+ # Default to SimpleTrustRegion if no algorithm specified
19+ alg = nlsolve_alg === nothing ? SimpleTrustRegion () : nlsolve_alg
20+
21+ # Create initialization problem
22+ initprob = initdata. initializeprob
23+
24+ # Update the problem if needed
25+ if initdata. update_initializeprob! != = nothing
26+ if initdata. is_update_oop === Val (true )
27+ initprob = initdata. update_initializeprob! (initprob, (u= u0, p= p))
28+ else
29+ initdata. update_initializeprob! (initprob, (u= u0, p= p))
30+ end
31+ end
32+
33+ # Solve initialization problem using SimpleNonlinearSolve
34+ sol = solve (initprob, alg; abstol, reltol)
35+
36+ # Extract results
37+ if SciMLBase. successful_retcode (sol)
38+ # Apply result mappings if they exist
39+ u_init = if initdata. initializeprobmap != = nothing
40+ initdata. initializeprobmap (sol)
41+ else
42+ u0
43+ end
44+
45+ p_init = if initdata. initializeprobpmap != = nothing
46+ initdata. initializeprobpmap ((u= u0, p= p), sol)
47+ else
48+ p
49+ end
50+
51+ return u_init, p_init, true
52+ else
53+ # If initialization fails, use original values
54+ return u0, p, false
55+ end
56+ catch
57+ # If anything goes wrong, fall back to original values
58+ return u0, p, false
59+ end
60+ end
0 commit comments