@@ -45,19 +45,19 @@ const prob_dde_DDETST_A1 =
45
45
Delay differential equation model of chronic granulocytic leukemia, given by
46
46
47
47
```math
48
- \b egin{align*}
49
- u_1'(t) &= \f rac{1.1}{1 + \s qrt{10} u_1(t - 20)^{5/4}} - \f rac{10 u_1(t)}{1 + 40 u_2(t)}, \\
50
- u_2'(t) &= \f rac{100 u_1(t)}{1 + 40 u_2(t)} - 2.43 u_2(t),
51
- \e nd{align*}
48
+ u_1'(t) = \f rac{1.1}{1 + \s qrt{10} u_1(t - 20)^{5/4}} - \f rac{10 u_1(t)}{1 + 40 u_2(t)},
49
+ ```
50
+ ```math
51
+ u_2'(t) = \f rac{100 u_1(t)}{1 + 40 u_2(t)} - 2.43 u_2(t),
52
52
```
53
53
54
54
for ``t \i n [0, 100]`` and history function
55
55
56
56
```math
57
- \b egin{align*}
58
- \p hi_1(t) &= 1.05767027/3, \\
59
- \p hi_2(t) &= 1.030713491/3,
60
- \e nd{align*}
57
+ \p hi_1(t) = 1.05767027/3,
58
+ ```
59
+ ```math
60
+ \p hi_2(t) = 1.030713491/3,
61
61
```
62
62
63
63
for ``t \l eq 0``.
@@ -246,19 +246,19 @@ const prob_dde_DDETST_C1 =
246
246
Delay differential equation
247
247
248
248
```math
249
- \b egin{align*}
250
- u_1'(t) &= - 2 u_1(t - u_2(t)), \\
251
- u_₂'(t) &= \f rac{|u_1(t - u_2(t))| - |u_1(t)|}{1 + |u_1(t - u_2(t))|},
252
- \e nd{align*}
249
+ u_1'(t) = - 2 u_1(t - u_2(t)),
250
+ ```
251
+ ```math
252
+ u_₂'(t) = \f rac{|u_1(t - u_2(t))| - |u_1(t)|}{1 + |u_1(t - u_2(t))|},
253
253
```
254
254
255
255
for ``t \i n [0, 40]`` with history function
256
256
257
257
```math
258
- \b egin{align*}
259
- \p hi_1(t) &= 1, \\
260
- \p hi_2(t) &= 0.5,
261
- \e nd{align*}
258
+ \p hi_1(t) = 1,
259
+ ```
260
+ ```math
261
+ \p hi_2(t) = 0.5,
262
262
```
263
263
264
264
for ``t \l eq 0``.
@@ -305,11 +305,13 @@ const prob_dde_DDETST_C2 =
305
305
Delay differential equation model of hematopoiesis, given by
306
306
307
307
```math
308
- \b egin{align*}
309
- u_1'(t) &= \h at{s}_0 u_2(t - T_1) - \g amma u_1(t) - Q,\\
310
- u_2'(t) &= f(u_1(t)) - k u_2(t),\\
311
- u_3'(t) &= 1 - \f rac{Q \e xp(\g amma u_3(t))}{\h at{s}_0 u_2(t - T_1 - u_3(t))},
312
- \e nd{align*}
308
+ u_1'(t) = \h at{s}_0 u_2(t - T_1) - \g amma u_1(t) - Q,
309
+ ```
310
+ ```math
311
+ u_2'(t) = f(u_1(t)) - k u_2(t),
312
+ ```
313
+ ```math
314
+ u_3'(t) = 1 - \f rac{Q \e xp(\g amma u_3(t))}{\h at{s}_0 u_2(t - T_1 - u_3(t))},
313
315
```
314
316
315
317
for ``t \i n [0, 300]`` with history function ``\p hi_1(0) = 3.325``, ``\p hi_3(0) = 120``, and
@@ -367,17 +369,19 @@ Delay differential equation model of hematopoiesis, given by the same delay diff
367
369
equation as [`prob_dde_DDETST_C3`](@ref)
368
370
369
371
```math
370
- \b egin{align*}
371
- u_1'(t) &= \h at{s}_0 u_2(t - T_1) - \g amma u_1(t) - Q,\\
372
- u_2'(t) &= f(u_1(t)) - k u_2(t),\\
373
- u_3'(t) &= 1 - \f rac{Q \e xp(\g amma u_3(t))}{\h at{s}_0 u_2(t - T_1 - u_3(t))},
374
- \e nd{align*}
372
+ u_1'(t) = \h at{s}_0 u_2(t - T_1) - \g amma u_1(t) - Q,
373
+ ```
374
+ ```math
375
+ u_2'(t) = f(u_1(t)) - k u_2(t),
376
+ ```
377
+ ```math
378
+ u_3'(t) = 1 - \f rac{Q \e xp(\g amma u_3(t))}{\h at{s}_0 u_2(t - T_1 - u_3(t))},
375
379
```
376
380
377
381
for ``t \i n [0, 100]`` with history function
378
382
``\p hi_1(0) = 3.5``, ``\p hi_3(0) = 50``, and ``\p hi_2(t) = 10`` for ``t \l eq 0``, where
379
383
``f(y) = a / (1 + K y^r)``, ``\h at{s}_0 = 0.00372``, ``T_1 = 3``, ``\g amma = 0.1``,
380
- ``Q = 0.00178``, ``k = 6.65`, ``a = 15600``, ``K = 0.0382``, and ``r = 6.96``.
384
+ ``Q = 0.00178``, ``k = 6.65`` , ``a = 15600``, ``K = 0.0382``, and ``r = 6.96``.
381
385
382
386
# References
383
387
@@ -421,19 +425,19 @@ const prob_dde_DDETST_C4 =
421
425
Delay differential equation
422
426
423
427
```math
424
- \b egin{align*}
425
- u_1'(t) &= u_2(t), \\
426
- u_2'(t) &= - u_2( \e xp(1 - u_2(t))) u_2(t)^2 \e xp(1 - u_2(t)),
427
- \e nd{align*}
428
+ u_1'(t) = u_2(t),
429
+ ```
430
+ ```math
431
+ u_2'(t) = - u_2( \e xp(1 - u_2(t))) u_2(t)^2 \e xp(1 - u_2(t)),
428
432
```
429
433
430
434
for ``t \i n [0.1, 5]`` with history function
431
435
432
436
```math
433
- \b egin{align*}
434
- \p hi_1(t) &= \l og t, \\
435
- \p hi_2(t) &= 1 / t,
436
- \e nd{align*}
437
+ \p hi_1(t) = \l og t,
438
+ ```
439
+ ```math
440
+ \p hi_2(t) = 1 / t,
437
441
```
438
442
439
443
for ``t \i n (0, 0.1]``.
@@ -443,10 +447,10 @@ for ``t \in (0, 0.1]``.
443
447
The analytical solution for ``t \i n [0.1, 5]`` is
444
448
445
449
```math
446
- \b egin{align*}
447
- u_1(t) &= \l og t, \\
448
- u_2(t) &= 1 / t.
449
- \e nd{align*}
450
+ u_1(t) = \l og t,
451
+ ```
452
+ ```math
453
+ u_2(t) = 1 / t.
450
454
```
451
455
452
456
# References
@@ -498,23 +502,31 @@ const prob_dde_DDETST_D1 =
498
502
Delay differential equation model of antigen antibody dynamics with fading memory, given by
499
503
500
504
```math
501
- \b egin{align*}
502
- u_1'(t) &= - r_1 u_1(t) u_2(t) + r_2 u_3(t), \\
503
- u_2'(t) &= - r_1 u_1(t) u_2(t) + \a lpha r_1 u_1(t - u_4(t)) u_2(t - u_4(t)), \\
504
- u_3'(t) &= r_1 u_1(t) u_2(t) - r_2 u_3(t), \\
505
- u_4'(t) &= 1 + \f rac{3 \d elta - u_1(t) u_2(t) - u_3(t)}{u_1(t - u_4(t)) u_2(t - u_4(t)) + u_3(t - u_4(t))} \e xp(\d elta u_4(t)),
506
- \e nd{align*}
505
+ u_1'(t) = - r_1 u_1(t) u_2(t) + r_2 u_3(t),
506
+ ```
507
+ ```math
508
+ u_2'(t) = - r_1 u_1(t) u_2(t) + \a lpha r_1 u_1(t - u_4(t)) u_2(t - u_4(t)),
509
+ ```
510
+ ```math
511
+ u_3'(t) = r_1 u_1(t) u_2(t) - r_2 u_3(t),
512
+ ```
513
+ ```math
514
+ u_4'(t) = 1 + \f rac{3 \d elta - u_1(t) u_2(t) - u_3(t)}{u_1(t - u_4(t)) u_2(t - u_4(t)) + u_3(t - u_4(t))} \e xp(\d elta u_4(t)),
507
515
```
508
516
509
517
for ``t \i n [0, 40]`` with history function
510
518
511
519
```math
512
- \b egin{align*}
513
- \p hi_1(t) &= 5, \\
514
- \p hi_2(t) &= 0.1, \\
515
- \p hi_3(t) &= 0, \\
516
- \p hi_4(t) &= 0,
517
- \e nd{align*}
520
+ \p hi_1(t) = 5,
521
+ ```
522
+ ```math
523
+ \p hi_2(t) = 0.1,
524
+ ```
525
+ ```math
526
+ \p hi_3(t) = 0,
527
+ ```
528
+ ```math
529
+ \p hi_4(t) = 0,
518
530
```
519
531
520
532
for ``t \l eq 0``, where ``r_1 = 0.02``, ``r_2 = 0.005``, ``\a lpha = 3``, and ``\d elta = 0.01``.
@@ -598,19 +610,19 @@ const prob_dde_DDETST_E1 =
598
610
Delay differential equation model of a logistic Gauss-type predator-prey system, given by
599
611
600
612
```math
601
- \b egin{align*}
602
- u_1'(t) &= u_1(t) (1 - u_1(t - \t au) - \r ho u_1'(t - \t au)) - \f rac{u_2(t) u_1(t)^2}{u_1(t)^2 + 1}, \\
603
- u_2'(t) &= u_2(t) \l eft( \f rac{u_1(t)^2}{u_1(t)^2 + 1} - \a lpha \r ight),
604
- \e nd{align*}
613
+ u_1'(t) = u_1(t) (1 - u_1(t - \t au) - \r ho u_1'(t - \t au)) - \f rac{u_2(t) u_1(t)^2}{u_1(t)^2 + 1},
614
+ ```
615
+ ```math
616
+ u_2'(t) = u_2(t) \l eft( \f rac{u_1(t)^2}{u_1(t)^2 + 1} - \a lpha \r ight),
605
617
```
606
618
607
619
for ``t \i n [0, 2]`` with history function
608
620
609
621
```math
610
- \b egin{align*}
611
- \p hi_1(t) &= 0.33 - t / 10, \\
612
- \p hi_2(t) &= 2.22 + t / 10,
613
- \e nd{align*}
622
+ \p hi_1(t) = 0.33 - t / 10,
623
+ ```
624
+ ```math
625
+ \p hi_2(t) = 2.22 + t / 10,
614
626
```
615
627
616
628
for ``t \l eq 0``, where ``\a lpha = 0.1``, ``\r ho = 2.9``, and ``\t au = 0.42``.
@@ -742,19 +754,23 @@ for ``t \in [0.25, 0.499]`` with history function ``\phi(t) = \exp(-t^2)`` and
742
754
743
755
The analytical solution for ``t \i n [0.25, 0.499]`` is
744
756
745
- ``math
757
+ ``` math
746
758
u(t) = u_i(t) = \e xp(-4^i t^2 + B_i t + C_i) / 2^i + K_i
747
759
```
748
760
749
761
if ``t \i n [x_i, x_{i + 1}]``, where
750
762
751
763
```math
752
- \b egin{align*}
753
- x_i &= (1 - 2^{-i}) / 2, \\
754
- B_i &= 2 (4^{i-1} + B_{i-1}), \\
755
- C_i &= - 4^{i-2} - B_{i-1} / 2 + C_{i-1}, \\
756
- K_i &= - \e xp(-4^i x_i^2 + B_i x_i + C_i) / 2^i + u_{i-1}(x_i),
757
- \e nd{align*}
764
+ x_i = (1 - 2^{-i}) / 2,
765
+ ```
766
+ ```math
767
+ B_i = 2 (4^{i-1} + B_{i-1}),
768
+ ```
769
+ ```math
770
+ C_i = - 4^{i-2} - B_{i-1} / 2 + C_{i-1},
771
+ ```
772
+ ```math
773
+ K_i = - \e xp(-4^i x_i^2 + B_i x_i + C_i) / 2^i + u_{i-1}(x_i),
758
774
```
759
775
760
776
and ``B_0 = C_0 = K_0 = 0``.
0 commit comments