@@ -20,7 +20,7 @@ u(t) = u0e^{αt}
20
20
21
21
with Float64s
22
22
"""
23
- prob_ode_linear = ODEProblem (linear,1 / 2 ,analytic = analytic_linear)
23
+ prob_ode_linear = ODETestProblem (linear,1 / 2 ,analytic_linear)
24
24
25
25
const linear_bigα = parse (BigFloat," 1.01" )
26
26
f_linearbig = (t,u) -> (linear_bigα* u)
@@ -40,7 +40,7 @@ u(t) = u0e^{αt}
40
40
41
41
with BigFloats
42
42
"""
43
- prob_ode_bigfloatlinear = ODEProblem (f_linearbig,parse (BigFloat," 0.5" ),analytic = analytic_linearbig)
43
+ prob_ode_bigfloatlinear = ODETestProblem (f_linearbig,parse (BigFloat," 0.5" ),analytic_linearbig)
44
44
45
45
f_2dlinear = (t,u,du) -> begin
46
46
for i in 1 : length (u)
@@ -63,7 +63,7 @@ u(t) = u0e^{αt}
63
63
64
64
with Float64s
65
65
"""
66
- prob_ode_2Dlinear = ODEProblem (f_2dlinear,rand (4 ,2 ),analytic = analytic_2dlinear)
66
+ prob_ode_2Dlinear = ODETestProblem (f_2dlinear,rand (4 ,2 ),analytic_2dlinear)
67
67
68
68
"""
69
69
100x100 version of the Linear ODE
@@ -80,7 +80,7 @@ u(t) = u0e^{αt}
80
80
81
81
with Float64s
82
82
"""
83
- prob_ode_large2Dlinear = ODEProblem (f_2dlinear,rand (100 ,100 ),analytic = analytic_2dlinear)
83
+ prob_ode_large2Dlinear = ODETestProblem (f_2dlinear,rand (100 ,100 ),analytic_2dlinear)
84
84
85
85
f_2dlinearbig = (t,u,du) -> begin
86
86
for i in 1 : length (u)
@@ -102,7 +102,7 @@ u(t) = u0e^{αt}
102
102
103
103
with BigFloats
104
104
"""
105
- prob_ode_bigfloat2Dlinear = ODEProblem (f_2dlinearbig,map (BigFloat,rand (4 ,2 )).* ones (4 ,2 )/ 2 ,analytic = analytic_2dlinear)
105
+ prob_ode_bigfloat2Dlinear = ODETestProblem (f_2dlinearbig,map (BigFloat,rand (4 ,2 )).* ones (4 ,2 )/ 2 ,analytic_2dlinear)
106
106
f_2dlinear_notinplace = (t,u) -> 1.01 * u
107
107
"""
108
108
4x2 version of the Linear ODE
@@ -119,7 +119,7 @@ u(t) = u0e^{αt}
119
119
120
120
on Float64. Purposefully not in-place as a test.
121
121
"""
122
- prob_ode_2Dlinear_notinplace = ODEProblem (f_2dlinear_notinplace,rand (4 ,2 ),analytic = analytic_2dlinear)
122
+ prob_ode_2Dlinear_notinplace = ODETestProblem (f_2dlinear_notinplace,rand (4 ,2 ),analytic_2dlinear)
123
123
124
124
# # Lotka-Volterra
125
125
@@ -139,7 +139,7 @@ Lotka-Voltera Equations
139
139
140
140
with initial condition ``x=y=1``
141
141
"""
142
- prb_ode_lotkavoltera = ODEProblem (lotka,[1 ;1 ])
142
+ prb_ode_lotkavoltera = ODEProblem (lotka,[1 ;1 ],[ 0 ; 1.0 ] )
143
143
144
144
# # Fitzhugh-Nagumo
145
145
@@ -157,7 +157,7 @@ Fitzhugh-Nagumo
157
157
158
158
with initial condition ``v=w=1``
159
159
"""
160
- prob_ode_fitzhughnagumo = ODEProblem (fitz,[1 ;1 ])
160
+ prob_ode_fitzhughnagumo = ODEProblem (fitz,[1 ;1 ],[ 0 ; 1.0 ] )
161
161
162
162
# Van der Pol Equations
163
163
van = @ode_def_noinvhes VanDerPol begin
@@ -179,7 +179,7 @@ with ``μ=1.0`` and ``u0=[0,\\sqrt{3}]``
179
179
180
180
Non-stiff parameters.
181
181
"""
182
- prob_ode_vanderpol = ODEProblem (van,[0 ;sqrt (3 )])
182
+ prob_ode_vanderpol = ODEProblem (van,[0 ;sqrt (3 )],[ 0 ; 1.0 ] )
183
183
184
184
van_stiff = VanDerPol (μ= 1e6 )
185
185
""" Van der Pol Equations
@@ -195,7 +195,7 @@ with ``μ=10^6`` and ``u0=[0,\\sqrt{3}]``
195
195
196
196
Stiff parameters.
197
197
"""
198
- prob_ode_vanderpol_stiff = ODEProblem (van_stiff,[0 ;sqrt (3 )])
198
+ prob_ode_vanderpol_stiff = ODEProblem (van_stiff,[0 ;sqrt (3 )],[ 0 ; 1.0 ] )
199
199
200
200
# ROBER
201
201
0 commit comments