@@ -67,7 +67,7 @@ Van der Pol Equations
67
67
\\ frac{dy}{dt} = μ((1-x^2)y -x)
68
68
```
69
69
70
- with ``μ=1.0`` and ``u0 =[0,\\ sqrt{3}]``
70
+ with ``μ=1.0`` and ``u_0 =[0,\\ sqrt{3}]``
71
71
72
72
Non-stiff parameters.
73
73
"""
@@ -83,7 +83,7 @@ Van der Pol Equations
83
83
\\ frac{dy}{dt} = μ(1-x^2)y -x
84
84
```
85
85
86
- with ``μ=10^6`` and ``u0 =[0,\\ sqrt{3}]``
86
+ with ``μ=10^6`` and ``u_0 =[0,\\ sqrt{3}]``
87
87
88
88
Stiff parameters.
89
89
"""
@@ -139,22 +139,22 @@ end
139
139
The ThreeBody problem as written by Hairer: (Non-stiff)
140
140
141
141
```math
142
- y₁′′ = y₁ + 2y₂′ - μ′ \\ frac{y₁+μ}{D₁} - μ\\ frac{y₁-μ′ }{D₂}
142
+ \f rac{dy₁}{dt} = y₁ + 2 \f rac{dy₂}{dt} - \b ar{μ} \\ frac{y₁+μ}{D₁} - μ\\ frac{y₁-\b ar{μ} }{D₂}
143
143
```
144
144
```math
145
- y₂′′ = y₂ - 2y₁′ - μ′ \\ frac{y₂}{D₁} - μ\\ frac{y₂}{D₂}
145
+ \f rac{dy₂}{dt} = y₂ - 2 \f rac{dy₁}{dt} - \b ar{μ} \\ frac{y₂}{D₁} - μ\\ frac{y₂}{D₂}
146
146
```
147
147
```math
148
148
D₁ = ((y₁+μ)^2 + y₂^2)^{3/2}
149
149
```
150
150
```math
151
- D₂ = ((y₁-μ′ )^2+y₂^2)^{3/2}
151
+ D₂ = ((y₁-\b ar{μ} )^2+y₂^2)^{3/2}
152
152
```
153
153
```math
154
154
μ = 0.012277471
155
155
```
156
156
```math
157
- μ′ =1-μ
157
+ \b ar{μ} =1-μ
158
158
```
159
159
160
160
From Hairer Norsett Wanner Solving Ordinary Differential Equations I - Nonstiff Problems Page 129
@@ -224,10 +224,10 @@ end
224
224
Pleiades Problem (Non-stiff)
225
225
226
226
```math
227
- xᵢ′′ = \\ sum_{j≠i} mⱼ(xⱼ-xᵢ)/rᵢⱼ
227
+ \f rac{d^2xᵢ}{dt^2} = \\ sum_{j≠i} mⱼ(xⱼ-xᵢ)/rᵢⱼ
228
228
```
229
229
```math
230
- yᵢ′′ = \\ sum_{j≠i} mⱼ(yⱼ-yᵢ)/rᵢⱼ
230
+ \f rac{d^2yᵢ}{dt^2} = \\ sum_{j≠i} mⱼ(yⱼ-yᵢ)/rᵢⱼ
231
231
```
232
232
233
233
where
@@ -281,19 +281,19 @@ y₆(0) = -4
281
281
y₇(0) = 4
282
282
```
283
283
284
- and with ``xᵢ′ (0)=yᵢ′ (0)=0`` except for
284
+ and with ``\f rac{dxᵢ (0)}{dt}= \f rac{dyᵢ (0)}{dt} =0`` except for
285
285
286
286
```math
287
- x₆′ (0) = 1.75
287
+ \f rac{dx₆ (0)}{dt} = 1.75
288
288
```
289
289
```math
290
- x₇′ (0) = -1.5
290
+ \f rac{dx₇ (0)}{dt} = -1.5
291
291
```
292
292
```math
293
- y₄′ (0) = -1.25
293
+ \f rac{dy₄ (0)}{dt} = -1.25
294
294
```
295
295
```math
296
- y₅′ (0) = 1
296
+ \f rac{dy₅ (0)}{dt} = 1
297
297
```
298
298
299
299
From Hairer Norsett Wanner Solving Ordinary Differential Equations I - Nonstiff Problems Page 244
0 commit comments