|
375 | 375 | const MM_linear =full(Diagonal(0.5ones(4)))
|
376 | 376 | (::typeof(mm_linear))(::Type{Val{:analytic}},u0,p,t) = expm(inv(MM_linear)*mm_A*t)*u0
|
377 | 377 | prob_ode_mm_linear = ODEProblem(mm_linear,rand(4),(0.0,1.0),mass_matrix=MM_linear)
|
| 378 | + |
| 379 | +function brusselator_loop(du, u, p, t) |
| 380 | + @inbounds begin |
| 381 | + A, B, α, dx, N = p |
| 382 | + α = α/dx^2 |
| 383 | + # Interior |
| 384 | + for i in 2:N-1, j in 2:N-1 |
| 385 | + du[i,j,1] = α*(u[i-1,j,1] + u[i+1,j,1] + u[i,j+1,1] + u[i,j-1,1] - 4u[i,j,1]) + |
| 386 | + B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] |
| 387 | + end |
| 388 | + for i in 2:N-1, j in 2:N-1 |
| 389 | + du[i,j,2] = α*(u[i-1,j,2] + u[i+1,j,2] + u[i,j+1,2] + u[i,j-1,2] - 4u[i,j,2]) + |
| 390 | + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2] |
| 391 | + end |
| 392 | + |
| 393 | + # Boundary @ edges |
| 394 | + for j in 2:N-1 |
| 395 | + i = 1 |
| 396 | + du[1,j,1] = α*(2u[i+1,j,1] + u[i,j+1,1] + u[i,j-1,1] - 4u[i,j,1]) + |
| 397 | + B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] |
| 398 | + end |
| 399 | + for j in 2:N-1 |
| 400 | + i = 1 |
| 401 | + du[1,j,2] = α*(2u[i+1,j,2] + u[i,j+1,2] + u[i,j-1,2] - 4u[i,j,2]) + |
| 402 | + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2] |
| 403 | + end |
| 404 | + for j in 2:N-1 |
| 405 | + i = N |
| 406 | + du[end,j,1] = α*(2u[i-1,j,1] + u[i,j+1,1] + u[i,j-1,1] - 4u[i,j,1]) + |
| 407 | + B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] |
| 408 | + end |
| 409 | + for j in 2:N-1 |
| 410 | + i = N |
| 411 | + du[end,j,2] = α*(2u[i-1,j,2] + u[i,j+1,2] + u[i,j-1,2] - 4u[i,j,2]) + |
| 412 | + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2] |
| 413 | + end |
| 414 | + for i in 2:N-1 |
| 415 | + j = 1 |
| 416 | + du[i,1,1] = α*(u[i-1,j,1] + u[i+1,j,1] + 2u[i,j+1,1] - 4u[i,j,1]) + |
| 417 | + B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] |
| 418 | + end |
| 419 | + for i in 2:N-1 |
| 420 | + j = 1 |
| 421 | + du[i,1,2] = α*(u[i-1,j,2] + u[i+1,j,2] + 2u[i,j+1,2] - 4u[i,j,2]) + |
| 422 | + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2] |
| 423 | + end |
| 424 | + for i in 2:N-1 |
| 425 | + j = N |
| 426 | + du[i,end,1] = α*(u[i-1,j,1] + u[i+1,j,1] + 2u[i,j-1,1] - 4u[i,j,1]) + |
| 427 | + B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] |
| 428 | + end |
| 429 | + for i in 2:N-1 |
| 430 | + j = N |
| 431 | + du[i,end,2] = α*(u[i-1,j,2] + u[i+1,j,2] + 2u[i,j-1,2] - 4u[i,j,2]) + |
| 432 | + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2] |
| 433 | + end |
| 434 | + |
| 435 | + # Boundary @ four vertexes |
| 436 | + i = 1; j = 1 |
| 437 | + du[1,1,1] = α*(2u[i+1,j,1] + 2u[i,j+1,1] - 4u[i,j,1]) + |
| 438 | + B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] |
| 439 | + du[1,1,2] = α*(2u[i+1,j,2] + 2u[i,j+1,2] - 4u[i,j,2]) + |
| 440 | + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2] |
| 441 | + |
| 442 | + i = 1; j = N |
| 443 | + du[1,N,1] = α*(2u[i+1,j,1] + 2u[i,j-1,1] - 4u[i,j,1]) + |
| 444 | + B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] |
| 445 | + du[1,N,2] = α*(2u[i+1,j,2] + 2u[i,j-1,2] - 4u[i,j,2]) + |
| 446 | + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2] |
| 447 | + |
| 448 | + i = N; j = 1 |
| 449 | + du[N,1,1] = α*(2u[i-1,j,1] + 2u[i,j+1,1] - 4u[i,j,1]) + |
| 450 | + B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] |
| 451 | + du[N,1,2] = α*(2u[i-1,j,2] + 2u[i,j+1,2] - 4u[i,j,2]) + |
| 452 | + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2] |
| 453 | + |
| 454 | + i = N; j = N |
| 455 | + du[end,end,1] = α*(2u[i-1,j,1] + 2u[i,j-1,1] - 4u[i,j,1]) + |
| 456 | + B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] |
| 457 | + du[end,end,2] = α*(2u[i-1,j,2] + 2u[i,j-1,2] - 4u[i,j,2]) + |
| 458 | + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2] |
| 459 | + end |
| 460 | +end |
| 461 | +function init_brusselator(xyd) |
| 462 | + M = length(xyd) |
| 463 | + u = zeros(M, M, 2) |
| 464 | + for I in CartesianRange((M, M)) |
| 465 | + u[I,1] = (2 + 0.25xyd[I[2]]) |
| 466 | + u[I,2] = (1 + 0.8xyd[I[1]]) |
| 467 | + end |
| 468 | + u |
| 469 | +end |
| 470 | +prob_ode_brusselator = ODEProblem(brusselator_loop, |
| 471 | + init_brusselator(linspace(0,1,128)), |
| 472 | + (0.,1), |
| 473 | + (3.4, 1., 0.002, 1/127, 128)) |
0 commit comments