@@ -14,7 +14,7 @@ u(t,u0,W_t)=u0\\exp((α-\\frac{β^2}{2})t+βW_t)
14
14
```
15
15
16
16
"""
17
- prob_sde_linear = SDEProblem (f,σ,1 / 2 ,analytic = analytic)
17
+ prob_sde_linear = SDETestProblem (f,σ,1 / 2 ,analytic)
18
18
19
19
f = (t,u,du) -> begin
20
20
for i = 1 : length (u)
@@ -38,7 +38,7 @@ where β=1.01, α=0.87, and initial condtion u0=1/2 with solution
38
38
u(t,u0,W_t)=u0\\ exp((α-\\ frac{β^2}{2})t+βW_t)
39
39
```
40
40
"""
41
- prob_sde_2Dlinear = SDEProblem (f,σ,ones (4 ,2 )/ 2 ,analytic = analytic)
41
+ prob_sde_2Dlinear = SDETestProblem (f,σ,ones (4 ,2 )/ 2 ,analytic)
42
42
43
43
44
44
f = (t,u) -> - .25 * u* (1 - u^ 2 )
@@ -55,7 +55,7 @@ and initial condtion u0=1/2, with solution
55
55
u(t,u0,W_t)=\\ frac{(1+u0)\\ exp(W_t)+u0-1}{(1+u0)\\ exp(W_t)+1-u0}
56
56
```
57
57
"""
58
- prob_sde_cubic = SDEProblem (f,σ,1 / 2 ,analytic = analytic)
58
+ prob_sde_cubic = SDETestProblem (f,σ,1 / 2 ,analytic)
59
59
60
60
f = (t,u) -> - 0.01 * sin .(u).* cos .(u).^ 3
61
61
σ = (t,u) -> 0.1 * cos .(u).^ 2
@@ -71,7 +71,7 @@ and initial condition `u0=1.0` with solution
71
71
u(t,u0,W_t)=\\ arctan(\\ frac{W_t}{10} + \\ tan(u0))
72
72
```
73
73
"""
74
- prob_sde_wave = SDEProblem (f,σ,1. ,analytic = analytic)
74
+ prob_sde_wave = SDETestProblem (f,σ,1. ,analytic)
75
75
76
76
const sde_wave_α = 0.1
77
77
const sde_wave_β = 0.05
@@ -92,7 +92,7 @@ and initial condition u0=1.0 with α=0.1 and β=0.05, with solution
92
92
u(t,u0,W_t)=\\ frac{u0}{\\ sqrt{1+t}} + \\ frac{β(t+αW_t)}{\\ sqrt{1+t}}
93
93
```
94
94
"""
95
- prob_sde_additive = SDEProblem (f,σ,1. ,analytic = analytic)
95
+ prob_sde_additive = SDETestProblem (f,σ,1. ,analytic)
96
96
97
97
const sde_wave_αvec = [0.1 ;0.1 ;0.1 ;0.1 ]
98
98
const sde_wave_βvec = [0.5 ;0.25 ;0.125 ;0.1115 ]
@@ -113,7 +113,7 @@ analytic = (t,u0,W) -> u0./sqrt(1+t) + sde_wave_βvec.*(t+sde_wave_αvec.*W)./sq
113
113
A multiple dimension extension of `additiveSDEExample`
114
114
115
115
"""
116
- prob_sde_additivesystem = SDEProblem (f,σ,[1. ;1. ;1. ;1. ],analytic = analytic)
116
+ prob_sde_additivesystem = SDETestProblem (f,σ,[1. ;1. ;1. ;1. ],analytic)
117
117
118
118
f = @ode_def_nohes LorenzSDE begin
119
119
dx = σ* (y- x)
@@ -135,7 +135,7 @@ dz &= (x*y - β*z)dt + αdW_t \\\\
135
135
136
136
with ``σ=10``, ``ρ=28``, ``β=8/3``, ``α=3.0`` and inital condition ``u0=[1;1;1]``.
137
137
"""
138
- prob_sde_lorenz = SDEProblem (f,σ,ones (3 ))
138
+ prob_sde_lorenz = SDEProblem (f,σ,ones (3 ),( 0.0 , 10.0 ) )
139
139
140
140
function oval2ModelExample (;largeFluctuations= false ,useBigs= false ,noiseLevel= 1 )
141
141
# Parameters
@@ -283,5 +283,5 @@ function oval2ModelExample(;largeFluctuations=false,useBigs=false,noiseLevel=1)
283
283
u0 = big (u0)
284
284
end
285
285
# u0 = [0.1701;1.6758;0.0027;0.0025;0.0141;0.0811;0.1642;0.0009;0.0001;0.0000;0.0000;0.0000;0.0697;1.2586;0.0478;194.2496;140.0758;1.5407;1.5407] #Fig 9A
286
- return (SDEProblem (f,σ,u0))
286
+ return (SDEProblem (f,σ,u0,( 0.0 , 500.0 ) ))
287
287
end
0 commit comments