|
1 |
| -@testset "SpectralConv" begin |
| 1 | +@testset "SpectralConv1d" begin |
2 | 2 | modes = (16, )
|
3 | 3 | ch = 64 => 64
|
4 | 4 |
|
|
8 | 8 | )
|
9 | 9 | @test ndims(SpectralConv(ch, modes)) == 1
|
10 | 10 |
|
11 |
| - 𝐱, _ = get_burgers_data(n=1000) |
12 |
| - @test size(m(𝐱)) == (64, 1024, 1000) |
| 11 | + 𝐱, _ = get_burgers_data(n=5) |
| 12 | + @test size(m(𝐱)) == (64, 1024, 5) |
13 | 13 |
|
14 |
| - T = Float32 |
15 | 14 | loss(x, y) = Flux.mse(m(x), y)
|
16 |
| - data = [(T.(𝐱[:, :, 1:5]), rand(T, 64, 1024, 5))] |
| 15 | + data = [(𝐱, rand(Float32, 64, 1024, 5))] |
17 | 16 | Flux.train!(loss, params(m), data, Flux.ADAM())
|
18 | 17 | end
|
19 | 18 |
|
20 |
| -@testset "FourierOperator" begin |
| 19 | +@testset "FourierOperator1d" begin |
21 | 20 | modes = (16, )
|
22 | 21 | ch = 64 => 64
|
23 | 22 |
|
|
26 | 25 | FourierOperator(ch, modes)
|
27 | 26 | )
|
28 | 27 |
|
29 |
| - 𝐱, _ = get_burgers_data(n=1000) |
30 |
| - @test size(m(𝐱)) == (64, 1024, 1000) |
| 28 | + 𝐱, _ = get_burgers_data(n=5) |
| 29 | + @test size(m(𝐱)) == (64, 1024, 5) |
31 | 30 |
|
32 | 31 | loss(x, y) = Flux.mse(m(x), y)
|
33 |
| - data = [(Float32.(𝐱[:, :, 1:5]), rand(Float32, 64, 1024, 5))] |
| 32 | + data = [(𝐱, rand(Float32, 64, 1024, 5))] |
| 33 | + Flux.train!(loss, params(m), data, Flux.ADAM()) |
| 34 | +end |
| 35 | + |
| 36 | +@testset "SpectralConv2d" begin |
| 37 | + modes = (16, 16) |
| 38 | + ch = 64 => 64 |
| 39 | + |
| 40 | + m = Chain( |
| 41 | + Dense(1, 64), |
| 42 | + SpectralConv(ch, modes) |
| 43 | + ) |
| 44 | + @test ndims(SpectralConv(ch, modes)) == 2 |
| 45 | + |
| 46 | + 𝐱, _, _, _ = get_darcy_flow_data(n=5, Δsamples=20) |
| 47 | + @test size(m(𝐱)) == (64, 22, 22, 5) |
| 48 | + |
| 49 | + loss(x, y) = Flux.mse(m(x), y) |
| 50 | + data = [(𝐱, rand(Float32, 64, 22, 22, 5))] |
| 51 | + Flux.train!(loss, params(m), data, Flux.ADAM()) |
| 52 | +end |
| 53 | + |
| 54 | +@testset "FourierOperator2d" begin |
| 55 | + modes = (16, 16) |
| 56 | + ch = 64 => 64 |
| 57 | + |
| 58 | + m = Chain( |
| 59 | + Dense(1, 64), |
| 60 | + FourierOperator(ch, modes) |
| 61 | + ) |
| 62 | + |
| 63 | + 𝐱, _, _, _ = get_darcy_flow_data(n=5, Δsamples=20) |
| 64 | + @test size(m(𝐱)) == (64, 22, 22, 5) |
| 65 | + |
| 66 | + loss(x, y) = Flux.mse(m(x), y) |
| 67 | + data = [(𝐱, rand(Float32, 64, 22, 22, 5))] |
34 | 68 | Flux.train!(loss, params(m), data, Flux.ADAM())
|
35 | 69 | end
|
0 commit comments