|
1 | 1 | module SuperResolution
|
2 | 2 |
|
3 |
| -using NeuralOperators |
4 |
| -using Flux |
5 |
| -using Flux.Losses: mse |
6 |
| -using Flux.Data: DataLoader |
7 |
| -using GeometricFlux |
8 |
| -using Graphs |
9 |
| -using CUDA |
10 |
| -using JLD2 |
11 |
| -using ProgressMeter: Progress, next! |
| 3 | +using WaterLily, LinearAlgebra, ProgressMeter, MLUtils |
| 4 | +using NeuralOperators, Flux |
| 5 | +using CUDA, FluxTraining, BSON |
12 | 6 |
|
13 |
| -include("data.jl") |
14 |
| -include("models.jl") |
| 7 | +function circle(n, m; Re=250) # copy from [WaterLily](https://github.com/weymouth/WaterLily.jl) |
| 8 | + # Set physical parameters |
| 9 | + U, R, center = 1., m/8., [m/2, m/2] |
| 10 | + ν = U * R / Re |
15 | 11 |
|
16 |
| -function update_model!(model_file_path, model) |
17 |
| - model = cpu(model) |
18 |
| - jldsave(model_file_path; model) |
19 |
| - @info "model updated!" |
| 12 | + body = AutoBody((x,t) -> LinearAlgebra.norm2(x .- center) - R) |
| 13 | + Simulation((n+2, m+2), [U, 0.], R; ν, body) |
20 | 14 | end
|
21 | 15 |
|
22 |
| -function get_model() |
23 |
| - f = jldopen(joinpath(@__DIR__, "../model/model.jld2")) |
24 |
| - model = f["model"] |
25 |
| - close(f) |
| 16 | +function gen_data(ts::AbstractRange; resolution=2) |
| 17 | + @info "gen data with $(resolution)x resolution... " |
| 18 | + p = Progress(length(ts)) |
| 19 | + |
| 20 | + n, m = resolution * 3(2^5), resolution * 2^6 |
| 21 | + circ = circle(n, m) |
| 22 | + |
| 23 | + 𝐩s = Array{Float32}(undef, 1, n, m, length(ts)) |
| 24 | + for (i, t) in enumerate(ts) |
| 25 | + sim_step!(circ, t) |
| 26 | + 𝐩s[1, :, :, i] .= Float32.(circ.flow.p)[2:end-1, 2:end-1] |
| 27 | + |
| 28 | + next!(p) |
| 29 | + end |
| 30 | + |
| 31 | + return 𝐩s |
| 32 | +end |
| 33 | + |
| 34 | +function get_dataloader(; ts::AbstractRange=LinRange(100, 11000, 10000), ratio::Float64=0.95, batchsize=100) |
| 35 | + data = gen_data(ts, resolution=1) |
| 36 | + data_train, data_validate = splitobs(shuffleobs((𝐱=data[:, :, :, 1:end-1], 𝐲=data[:, :, :, 2:end])), at=ratio) |
| 37 | + |
| 38 | + data = gen_data(ts, resolution=2) |
| 39 | + data_test = (𝐱=data[:, :, :, 1:end-1], 𝐲=data[:, :, :, 2:end]) |
26 | 40 |
|
27 |
| - return model |
| 41 | + loader_train = DataLoader(data_train, batchsize=batchsize, shuffle=true) |
| 42 | + loader_validate = DataLoader(data_validate, batchsize=batchsize, shuffle=false) |
| 43 | + loader_test = DataLoader(data_test, batchsize=batchsize, shuffle=false) |
| 44 | + |
| 45 | + return (training=loader_train, validation=loader_validate, testing=loader_test) |
| 46 | +end |
| 47 | + |
| 48 | +struct TestPhase<:FluxTraining.AbstractValidationPhase end |
| 49 | + |
| 50 | +FluxTraining.phasedataiter(::TestPhase) = :testing |
| 51 | + |
| 52 | +function FluxTraining.step!(learner, phase::TestPhase, batch) |
| 53 | + xs, ys = batch |
| 54 | + FluxTraining.runstep(learner, phase, (xs=xs, ys=ys)) do _, state |
| 55 | + state.ŷs = learner.model(state.xs) |
| 56 | + state.loss = learner.lossfn(state.ŷs, state.ys) |
| 57 | + end |
28 | 58 | end
|
29 | 59 |
|
30 |
| -loss(m, 𝐱, 𝐲) = mse(m(𝐱), 𝐲) |
31 |
| -loss(m, loader::DataLoader, device) = sum(loss(m, 𝐱 |> device, 𝐲 |> device) for (𝐱, 𝐲) in loader)/length(loader) |
| 60 | +function fit!(learner, nepochs::Int, (trainiter, validiter, testiter)) |
| 61 | + for i in 1:nepochs |
| 62 | + epoch!(learner, TrainingPhase(), trainiter) |
| 63 | + epoch!(learner, ValidationPhase(), validiter) |
| 64 | + epoch!(learner, TestPhase(), testiter) |
| 65 | + end |
| 66 | +end |
32 | 67 |
|
| 68 | +function fit!(learner, nepochs::Int) |
| 69 | + fit!(learner, nepochs, (learner.data.training, learner.data.validation, learner.data.testing)) |
33 | 70 | end
|
| 71 | + |
| 72 | +function train(; epochs=50) |
| 73 | + if has_cuda() |
| 74 | + @info "CUDA is on" |
| 75 | + device = gpu |
| 76 | + CUDA.allowscalar(false) |
| 77 | + else |
| 78 | + device = cpu |
| 79 | + end |
| 80 | + |
| 81 | + model = MarkovNeuralOperator(ch=(1, 64, 64, 64, 64, 64, 1), modes=(24, 24), σ=gelu) |
| 82 | + data = get_dataloader() |
| 83 | + optimiser = Flux.Optimiser(WeightDecay(1f-4), Flux.ADAM(1f-3)) |
| 84 | + loss_func = l₂loss |
| 85 | + |
| 86 | + learner = Learner( |
| 87 | + model, data, optimiser, loss_func, |
| 88 | + ToDevice(device, device), |
| 89 | + # Checkpointer(joinpath(@__DIR__, "../model/")) |
| 90 | + ) |
| 91 | + |
| 92 | + fit!(learner, epochs) |
| 93 | + |
| 94 | + return learner |
| 95 | +end |
| 96 | + |
| 97 | +function get_model() |
| 98 | + model_path = joinpath(@__DIR__, "../model/") |
| 99 | + model_file = readdir(model_path)[end] |
| 100 | + |
| 101 | + return BSON.load(joinpath(model_path, model_file), @__MODULE__)[:model] |
| 102 | +end |
| 103 | + |
| 104 | +# using NeuralOperators |
| 105 | +# using Flux |
| 106 | +# using Flux.Losses: mse |
| 107 | +# using Flux.Data: DataLoader |
| 108 | +# using GeometricFlux |
| 109 | +# using Graphs |
| 110 | +# using CUDA |
| 111 | +# using JLD2 |
| 112 | +# using ProgressMeter: Progress, next! |
| 113 | + |
| 114 | +# include("data.jl") |
| 115 | +# include("models.jl") |
| 116 | + |
| 117 | +# function update_model!(model_file_path, model) |
| 118 | +# model = cpu(model) |
| 119 | +# jldsave(model_file_path; model) |
| 120 | +# @info "model updated!" |
| 121 | +# end |
| 122 | + |
| 123 | +# function get_model() |
| 124 | +# f = jldopen(joinpath(@__DIR__, "../model/model.jld2")) |
| 125 | +# model = f["model"] |
| 126 | +# close(f) |
| 127 | + |
| 128 | +# return model |
| 129 | +# end |
| 130 | + |
| 131 | +# loss(m, 𝐱, 𝐲) = mse(m(𝐱), 𝐲) |
| 132 | +# loss(m, loader::DataLoader, device) = sum(loss(m, 𝐱 |> device, 𝐲 |> device) for (𝐱, 𝐲) in loader)/length(loader) |
| 133 | + |
| 134 | +end # module |
0 commit comments