|
8 | 8 | )
|
9 | 9 | @test ndims(SpectralConv(ch, modes)) == 1
|
10 | 10 |
|
11 |
| - 𝐱, _ = get_burgers_data(n=1000) |
12 |
| - @test size(m(𝐱)) == (64, 1024, 1000) |
| 11 | + 𝐱, _ = get_burgers_data(n=5) |
| 12 | + @test size(m(𝐱)) == (64, 1024, 5) |
13 | 13 |
|
14 |
| - T = Float32 |
15 | 14 | loss(x, y) = Flux.mse(m(x), y)
|
16 |
| - data = [(T.(𝐱[:, :, 1:5]), rand(T, 64, 1024, 5))] |
| 15 | + data = [(𝐱, rand(Float32, 64, 1024, 5))] |
17 | 16 | Flux.train!(loss, params(m), data, Flux.ADAM())
|
18 | 17 | end
|
19 | 18 |
|
|
26 | 25 | FourierOperator(ch, modes)
|
27 | 26 | )
|
28 | 27 |
|
29 |
| - 𝐱, _ = get_burgers_data(n=1000) |
30 |
| - @test size(m(𝐱)) == (64, 1024, 1000) |
| 28 | + 𝐱, _ = get_burgers_data(n=5) |
| 29 | + @test size(m(𝐱)) == (64, 1024, 5) |
31 | 30 |
|
32 | 31 | loss(x, y) = Flux.mse(m(x), y)
|
33 |
| - data = [(Float32.(𝐱[:, :, 1:5]), rand(Float32, 64, 1024, 5))] |
| 32 | + data = [(𝐱, rand(Float32, 64, 1024, 5))] |
34 | 33 | Flux.train!(loss, params(m), data, Flux.ADAM())
|
35 | 34 | end
|
36 | 35 |
|
|
44 | 43 | )
|
45 | 44 | @test ndims(SpectralConv(ch, modes)) == 2
|
46 | 45 |
|
47 |
| - 𝐱, _ , _, _ = get_darcy_flow_data() |
48 |
| - @test size(m(𝐱)) == (64, 85, 85, 1024) |
| 46 | + 𝐱, _, _, _ = get_darcy_flow_data(n=5, Δsamples=20) |
| 47 | + @test size(m(𝐱)) == (64, 22, 22, 5) |
49 | 48 |
|
50 |
| - T = Float32 |
51 | 49 | loss(x, y) = Flux.mse(m(x), y)
|
52 |
| - data = [(T.(𝐱[:, :, :, 1:5]), rand(T, 64, 85, 85, 5))] |
| 50 | + data = [(𝐱, rand(Float32, 64, 22, 22, 5))] |
53 | 51 | Flux.train!(loss, params(m), data, Flux.ADAM())
|
54 | 52 | end
|
55 | 53 |
|
|
62 | 60 | FourierOperator(ch, modes)
|
63 | 61 | )
|
64 | 62 |
|
65 |
| - 𝐱, _ , _, _ = get_darcy_flow_data() |
66 |
| - @test size(m(𝐱)) == (64, 85, 85, 1024) |
| 63 | + 𝐱, _, _, _ = get_darcy_flow_data(n=5, Δsamples=20) |
| 64 | + @test size(m(𝐱)) == (64, 22, 22, 5) |
67 | 65 |
|
68 | 66 | loss(x, y) = Flux.mse(m(x), y)
|
69 |
| - data = [(Float32.(𝐱[:, :, :, 1:5]), rand(Float32, 64, 85, 85, 5))] |
| 67 | + data = [(𝐱, rand(Float32, 64, 22, 22, 5))] |
70 | 68 | Flux.train!(loss, params(m), data, Flux.ADAM())
|
71 | 69 | end
|
0 commit comments