|
1 |
| -using LinearSolve, Test |
2 |
| -using SparseArrays, LinearAlgebra |
3 |
| - |
4 |
| -m, n = 13, 3 |
5 |
| - |
6 |
| -A = rand(m, n); b = rand(m); |
7 |
| -prob = LinearProblem(A, b) |
8 |
| -res = A\b |
9 |
| -@test solve(prob).u ≈ res |
10 |
| -@test solve(prob, QRFactorization()) ≈ res |
11 |
| -@test solve(prob, KrylovJL_LSMR()) ≈ res |
12 |
| - |
13 |
| -A = sprand(m, n, 0.5); b = rand(m); |
14 |
| -prob = LinearProblem(A, b) |
15 |
| -res = A\b |
16 |
| -@test solve(prob).u ≈ res |
17 |
| -@test solve(prob, QRFactorization()) ≈ res |
18 |
| -@test solve(prob, KrylovJL_LSMR()) ≈ res |
19 |
| - |
| 1 | +using LinearSolve, Test |
| 2 | +using SparseArrays, LinearAlgebra |
| 3 | + |
| 4 | +m, n = 13, 3 |
| 5 | + |
| 6 | +A = rand(m, n); |
| 7 | +b = rand(m); |
| 8 | +prob = LinearProblem(A, b) |
| 9 | +res = A \ b |
| 10 | +@test solve(prob).u ≈ res |
| 11 | +@test solve(prob, QRFactorization()) ≈ res |
| 12 | +@test solve(prob, KrylovJL_LSMR()) ≈ res |
| 13 | + |
| 14 | +A = sprand(m, n, 0.5); |
| 15 | +b = rand(m); |
| 16 | +prob = LinearProblem(A, b) |
| 17 | +res = A \ b |
| 18 | +@test solve(prob).u ≈ res |
| 19 | +@test solve(prob, QRFactorization()) ≈ res |
| 20 | +@test solve(prob, KrylovJL_LSMR()) ≈ res |
0 commit comments