@@ -16,22 +16,6 @@ Base.eltype(A::ComposePreconditioner) = Float64 #eltype(A.inner)
16
16
Base. adjoint (A:: ComposePreconditioner ) = ComposePreconditioner (A. outer' , A. inner' )
17
17
Base. inv (A:: ComposePreconditioner ) = InvComposePreconditioner (A)
18
18
19
- #= unused
20
- function LinearAlgebra.mul!(y, A::ComposePreconditioner, x)
21
- @unpack inner, outer = A
22
- tmp = similar(y)
23
- mul!(tmp, outer, x)
24
- mul!(y, inner, tmp)
25
- end
26
-
27
- function LinearAlgebra.mul!(C, A::ComposePreconditioner, B, α, β)
28
- @unpack inner, outer = A
29
- tmp = similar(B)
30
- mul!(tmp, inner, B)
31
- mul!(C, outer, tmp, α, β)
32
- end
33
- =#
34
-
35
19
function LinearAlgebra. ldiv! (A:: ComposePreconditioner , x)
36
20
@unpack inner, outer = A
37
21
@@ -61,26 +45,6 @@ function LinearAlgebra.mul!(y, A::InvComposePreconditioner, x)
61
45
ldiv! (y, P, x)
62
46
end
63
47
64
- #=
65
- function LinearAlgebra.mul!(C, A::InvComposePreconditioner, B, α, β)
66
- @unpack P = A
67
- tmp = copy(B)
68
- ldiv!(tmp, P, B)
69
- mul!(C, I, tmp, α, β)
70
- end
71
-
72
- function LinearAlgebra.ldiv!(A::InvComposePreconditioner, x)
73
- @unpack P = A
74
- y = copy(x)
75
- mul!(x, P, y)
76
- end
77
-
78
- function LinearAlgebra.ldiv!(y, A::InvComposePreconditioner, x)
79
- @unpack P = A
80
- mul!(y, P, x)
81
- end
82
- =#
83
-
84
48
# # Krylov.jl
85
49
86
50
struct KrylovJL{F,Tl,Tr,I,A,K} <: AbstractKrylovSubspaceMethod
0 commit comments