@@ -64,11 +64,11 @@ following interface:
64
64
65
65
## Curated List of Pre-Defined Preconditioners
66
66
67
- The following preconditioners are tested to match the interface of LinearSolve.jl.
67
+ The following preconditioners match the interface of LinearSolve.jl.
68
68
69
- - ` ComposePreconditioner(prec1,prec2) ` : composes the preconditioners to apply
69
+ - ` LinearSolve. ComposePreconditioner(prec1,prec2)` : composes the preconditioners to apply
70
70
` prec1 ` before ` prec2 ` .
71
- - ` InvPreconditioner(prec) ` : inverts ` mul! ` and ` ldiv! ` in a preconditioner
71
+ - ` LinearSolve. InvPreconditioner(prec)` : inverts ` mul! ` and ` ldiv! ` in a preconditioner
72
72
definition as a lazy inverse.
73
73
- ` LinearAlgera.Diagonal(s::Union{Number,AbstractVector}) ` : the lazy Diagonal
74
74
matrix type of Base.LinearAlgebra. Used for efficient construction of a
@@ -77,3 +77,18 @@ The following preconditioners are tested to match the interface of LinearSolve.j
77
77
- [ IncompleteLU.ilu] ( https://github.com/haampie/IncompleteLU.jl ) : an implementation
78
78
of the incomplete LU-factorization preconditioner. This requires ` A ` as a
79
79
` SparseMatrixCSC ` .
80
+ - [ Preconditioners.CholeskyPreconditioner(A, i)] ( https://github.com/mohamed82008/Preconditioners.jl ) :
81
+ An incomplete Cholesky preconditioner with cut-off level ` i ` . Requires ` A ` as
82
+ a ` AbstractMatrix ` and positive semi-definite.
83
+ - [ AlgebraicMultiGrid] ( https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl ) :
84
+ Implementations of the algebraic multigrid method. Must be converted to a
85
+ preconditioner via ` AlgebraicMultiGrid.aspreconditioner(AlgebraicMultiGrid.precmethod(A)) ` .
86
+ Requires ` A ` as a ` AbstractMatrix ` . Provides the following methods:
87
+ - ` AlgebraicMultiGrid.ruge_stuben(A) `
88
+ - ` AlgebraicMultiGrid.smoothed_aggregation(A) `
89
+ - [ PyAMG] ( https://github.com/cortner/PyAMG.jl ) :
90
+ Implementations of the algebraic multigrid method. Must be converted to a
91
+ preconditioner via ` PyAMG.aspreconditioner(PyAMG.precmethod(A)) ` .
92
+ Requires ` A ` as a ` AbstractMatrix ` . Provides the following methods:
93
+ - ` PyAMG.RugeStubenSolver(A) `
94
+ - ` PyAMG.SmoothedAggregationSolver(A) `
0 commit comments