@@ -13,18 +13,31 @@ A, b = h([ForwardDiff.Dual(5.0, 1.0, 0.0), ForwardDiff.Dual(5.0, 0.0, 1.0)])
13
13
14
14
prob = LinearProblem (A, b)
15
15
overload_x_p = solve (prob)
16
- original_x_p = A \ b
16
+ backslash_x_p = A \ b
17
+ krylov_overload_x_p = solve (prob, KrylovJL_GMRES ())
18
+ @test ≈ (overload_x_p, backslash_x_p, rtol = 1e-9 )
19
+ @test ≈ (krylov_overload_x_p, backslash_x_p, rtol = 1e-9 )
20
+
21
+ krylov_prob = LinearProblem (A, b, u0 = rand (3 ))
22
+ krylov_u0_sol = solve (krylov_prob, KrylovJL_GMRES ())
23
+
24
+ @test ≈ (krylov_u0_sol, original_x_p, rtol = 1e-9 )
17
25
18
- @test ≈ (overload_x_p, original_x_p, rtol = 1e-9 )
19
26
20
27
A, _ = h ([ForwardDiff. Dual (5.0 , 1.0 , 0.0 ), ForwardDiff. Dual (5.0 , 0.0 , 1.0 )])
28
+ backslash_x_p = A \ [6.0 , 10.0 , 25.0 ]
21
29
prob = LinearProblem (A, [6.0 , 10.0 , 25.0 ])
22
- @test ≈ (solve (prob). u, A \ [6.0 , 10.0 , 25.0 ], rtol = 1e-9 )
30
+
31
+ @test ≈ (solve (prob). u, backslash_x_p, rtol = 1e-9 )
32
+ @test ≈ (solve (prob, KrylovJL_GMRES ()). u, backslash_x_p, rtol = 1e-9 )
23
33
24
34
_, b = h ([ForwardDiff. Dual (5.0 , 1.0 , 0.0 ), ForwardDiff. Dual (5.0 , 0.0 , 1.0 )])
25
35
A = [5.0 6.0 125.0 ; 15.0 10.0 21.0 ; 25.0 45.0 5.0 ]
36
+ backslash_x_p = A \ b
26
37
prob = LinearProblem (A, b)
27
- @test ≈ (solve (prob). u, A \ b, rtol = 1e-9 )
38
+
39
+ @test ≈ (solve (prob). u, backslash_x_p, rtol = 1e-9 )
40
+ @test ≈ (solve (prob, KrylovJL_GMRES ()). u, backslash_x_p, rtol = 1e-9 )
28
41
29
42
A, b = h ([ForwardDiff. Dual (10.0 , 1.0 , 0.0 ), ForwardDiff. Dual (10.0 , 0.0 , 1.0 )])
30
43
@@ -36,6 +49,6 @@ cache.A = new_A
36
49
cache. b = new_b
37
50
38
51
x_p = solve! (cache)
39
- other_x_p = new_A \ new_b
52
+ backslash_x_p = new_A \ new_b
40
53
41
- @test ≈ (x_p, other_x_p , rtol = 1e-9 )
54
+ @test ≈ (x_p, backslash_x_p , rtol = 1e-9 )
0 commit comments