diff --git a/docs/src/tutorials/autotune.md b/docs/src/tutorials/autotune.md index d518d57f7..ad87d6354 100644 --- a/docs/src/tutorials/autotune.md +++ b/docs/src/tutorials/autotune.md @@ -73,7 +73,7 @@ Control which matrix size ranges to test: # :small - 20×20 to 100×100 (small problems) # :medium - 100×100 to 300×300 (typical problems) # :large - 300×300 to 1000×1000 (larger problems) -# :big - 10000×10000 to 100000×100000 (GPU/HPC scale) +# :big - 10000×1000 to 20000x20000 (GPU/HPC scale) # Default: test tiny through large results = autotune_setup() # uses [:tiny, :small, :medium, :large] @@ -449,4 +449,4 @@ LinearSolveAutotune provides a comprehensive system for benchmarking and optimiz - Performance visualization - Preference setting for automatic algorithm selection (in development) -By running autotune and optionally sharing your results, you help improve LinearSolve.jl's performance for everyone in the Julia community. \ No newline at end of file +By running autotune and optionally sharing your results, you help improve LinearSolve.jl's performance for everyone in the Julia community. diff --git a/lib/LinearSolveAutotune/src/benchmarking.jl b/lib/LinearSolveAutotune/src/benchmarking.jl index aa2fcd4d3..f70be4557 100644 --- a/lib/LinearSolveAutotune/src/benchmarking.jl +++ b/lib/LinearSolveAutotune/src/benchmarking.jl @@ -187,7 +187,7 @@ Size categories: - `:small` - 20:20:100 (for small problems) - `:medium` - 100:50:300 (for typical problems) - `:large` - 300:100:1000 (for larger problems) -- `:big` - 10000:1000:100000 (for very large/GPU problems) +- `:big` - vcat(1000:2000:10000, 10000:5000:20000) (for very large/GPU problems) """ function get_benchmark_sizes(size_categories::Vector{Symbol}) sizes = Int[] @@ -202,7 +202,7 @@ function get_benchmark_sizes(size_categories::Vector{Symbol}) elseif category == :large append!(sizes, 300:100:1000) elseif category == :big - append!(sizes, 10000:1000:100000) + append!(sizes, vcat(1000:2000:10000, 10000:5000:20000)) else @warn "Unknown size category: $category. Skipping." end @@ -236,7 +236,7 @@ function categorize_results(df::DataFrame) ("small (20-100)", 21:100), ("medium (100-300)", 101:300), ("large (300-1000)", 301:1000), - ("big (10000+)", 10000:typemax(Int)) + ("big (1000+)", 1000:typemax(Int)) ] # Get unique element types