diff --git a/docs/src/solvers/solvers.md b/docs/src/solvers/solvers.md index 7bcb11a56..286a5ead2 100644 --- a/docs/src/solvers/solvers.md +++ b/docs/src/solvers/solvers.md @@ -238,6 +238,19 @@ The following are non-standard GPU factorization routines. CudaOffloadFactorization ``` +### AMDGPU.jl + +The following are GPU factorization routines for AMD GPUs using the ROCm stack. + +!!! note + + Using these solvers requires adding the package AMDGPU.jl, i.e. `using AMDGPU` + +```@docs +AMDGPUOffloadLUFactorization +AMDGPUOffloadQRFactorization +``` + ### CUSOLVERRF.jl !!! note diff --git a/docs/src/tutorials/gpu.md b/docs/src/tutorials/gpu.md index ee737668c..f348c647a 100644 --- a/docs/src/tutorials/gpu.md +++ b/docs/src/tutorials/gpu.md @@ -39,8 +39,18 @@ sol.u This computation can be moved to the GPU by the following: ```julia -using CUDA # Add the GPU library -sol = LS.solve(prob, LS.CudaOffloadFactorization()) +using CUDA # Add the GPU library for NVIDIA GPUs +sol = LS.solve(prob, LS.CudaOffloadLUFactorization()) +sol.u +``` + +For AMD GPUs, you can use the AMDGPU.jl package: + +```julia +using AMDGPU # Add the GPU library for AMD GPUs +sol = LS.solve(prob, LS.AMDGPUOffloadLUFactorization()) # LU factorization +# or +sol = LS.solve(prob, LS.AMDGPUOffloadQRFactorization()) # QR factorization sol.u ```