You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
\frac{dx(t)}{dt} =& \frac{\sigma \left( y\left( t \right) - x\left( t \right) \right) \frac{d\left(x\left( t \right) - y\left( t \right)\right)}{dt}}{\frac{dz(t)}{dt}} \\
31
34
0 =& \frac{\sigma x\left( t \right) \left( \rho - z\left( t \right) \right)}{10} - y\left( t \right) \\
32
35
\frac{dz(t)}{dt} =& x\left( t \right) \left( y\left( t \right) \right)^{\frac{2}{3}} - \beta z\left( t \right)
33
36
\end{align}
34
-
"""
35
-
@parameters t p[1:3]
36
-
@variables u[1:3](t)
37
-
@derivatives D'~t
37
+
", "\r\n"=>"\n")
38
38
39
+
@variables u[1:3](t)
40
+
@parameters p[1:3]
39
41
eqs = [D(u[1]) ~ p[3]*(u[2]-u[1]),
40
42
0~ p[2]*p[3]*u[1]*(p[1]-u[1])/10-u[2],
41
43
D(u[3]) ~ u[1]*u[2]^(2//3) - p[3]*u[3]]
42
44
43
-
@testlatexify(eqs) ==
45
+
@testlatexify(eqs) ==replace(
44
46
raw"\begin{align}
45
47
\frac{du{_1}(t)}{dt} =& p{_3} \left( \mathrm{u{_2}}\left( t \right) - \mathrm{u{_1}}\left( t \right) \right) \\
46
48
0 =& \frac{p{_2} p{_3} \mathrm{u{_1}}\left( t \right) \left( p{_1} - \mathrm{u{_1}}\left( t \right) \right)}{10} - \mathrm{u{_2}}\left( t \right) \\
47
49
\frac{du{_3}(t)}{dt} =& \mathrm{u{_1}}\left( t \right) \left( \mathrm{u{_2}}\left( t \right) \right)^{\frac{2}{3}} - p{_3} \mathrm{u{_3}}\left( t \right)
48
50
\end{align}
49
-
"
51
+
", "\r\n"=>"\n")
50
52
51
53
eqs = [D(u[1]) ~ p[3]*(u[2]-u[1]),
52
54
D(u[2]) ~ p[2]*p[3]*u[1]*(p[1]-u[1])/10-u[2],
53
55
D(u[3]) ~ u[1]*u[2]^(2//3) - p[3]*u[3]]
54
56
55
57
sys =ODESystem(eqs)
56
58
57
-
@testlatexify(eqs) ==
59
+
@testlatexify(eqs) ==replace(
58
60
raw"\begin{align}
59
61
\frac{du{_1}(t)}{dt} =& p{_3} \left( \mathrm{u{_2}}\left( t \right) - \mathrm{u{_1}}\left( t \right) \right) \\
60
62
\frac{du{_2}(t)}{dt} =& \frac{p{_2} p{_3} \mathrm{u{_1}}\left( t \right) \left( p{_1} - \mathrm{u{_1}}\left( t \right) \right)}{10} - \mathrm{u{_2}}\left( t \right) \\
61
63
\frac{du{_3}(t)}{dt} =& \mathrm{u{_1}}\left( t \right) \left( \mathrm{u{_2}}\left( t \right) \right)^{\frac{2}{3}} - p{_3} \mathrm{u{_3}}\left( t \right)
62
64
\end{align}
63
-
"
65
+
", "\r\n"=>"\n")
66
+
67
+
68
+
@parameters t
69
+
@variablesx(t)
70
+
@derivatives D'~t
71
+
eqs = [D(x) ~ (1+cos(t))/(1+2*x)]
72
+
73
+
@testlatexify(eqs) ==replace(
74
+
raw"\begin{align}
75
+
\frac{dx(t)}{dt} =& \frac{1 + \cos\left( t \right)}{1 + 2 x\left( t \right)}
0 commit comments