Skip to content

Commit 2510dda

Browse files
committed
some edits to code
1 parent fe7b6e3 commit 2510dda

File tree

1 file changed

+13
-4
lines changed

1 file changed

+13
-4
lines changed

docs/src/tutorials/parameter_identifiability.md

Lines changed: 13 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,19 @@ Using ordinary differential equations in modeling processes is commonplace and t
44

55
We will start with determining local identifiability, where a parameter is known up to finitely many values, and then proceed to determining global identifiability properties, that is, which parameters can be identified uniquely.
66

7+
To install `StructuralIdentifiability.jl`, simply run
8+
```julia
9+
using Pkg
10+
Pkg.add("StructuralIdentifiability")
11+
```
12+
13+
The package has a standalone data structure for ordinary differential equations but is also compatible with `ODESystem` type from `ModelingToolkit.jl`.
14+
15+
Let's start with local identifiability!
716
## Local Identifiability
817
### Input System
918

10-
We will consider a simple two-species competition model
19+
We will consider the following model:
1120

1221
$$\begin{cases}
1322
\frac{d\,x_4}{d\,t} = - \frac{k_5 x_4}{k_6 + x_4},\\
@@ -120,7 +129,7 @@ Let us consider the same system but with two inputs and we will try to find out
120129
```@repl
121130
using StructuralIdentifiability, ModelingToolkit
122131
@parameters b c α β γ δ σ
123-
@variables t x1(t) x2(t) x3(t) x4(t) y(t) u1 u2
132+
@variables t x1(t) x2(t) x3(t) x4(t) y(t) u1(t) u2(t)
124133
D = Differential(t)
125134
126135
eqs = [
@@ -134,10 +143,10 @@ observed = [
134143
y~x1
135144
]
136145
137-
# no inputs
146+
# indicate inputs
138147
inputs = [u1, u2]
139148
140-
# check all parameters
149+
# check only 2 parameters
141150
to_check = [b, c]
142151
143152
ode = ODESystem(eqs, t, [x1, x2, x3, x4], [b, c, α, β, γ, δ, σ], observed=observed, name=:GoodwinOsc)

0 commit comments

Comments
 (0)