|
| 1 | +using ModelingToolkit |
| 2 | +using ModelingToolkitStandardLibrary |
| 3 | +using ModelingToolkitStandardLibrary.Blocks |
| 4 | +using OrdinaryDiffEq |
| 5 | +using Test |
| 6 | +using ControlSystemsMTK: tf, ss, get_named_sensitivity, get_named_comp_sensitivity |
| 7 | + |
| 8 | +# ============================================================================== |
| 9 | +## Mixing tank |
| 10 | +# This tests a common workflow in control engineering, the use of an inverse-based |
| 11 | +# feedforward model. Such a model differentiates "inputs", exercising the dummy-derivative functionality of ModelingToolkit. We also test linearization and computation of sensitivity functions |
| 12 | +# for such models. |
| 13 | +# ============================================================================== |
| 14 | + |
| 15 | +connect = ModelingToolkit.connect; |
| 16 | +@parameters t; |
| 17 | +D = Differential(t); |
| 18 | +rc = 0.25 # Reference concentration |
| 19 | + |
| 20 | +@mtkmodel MixingTank begin |
| 21 | + @parameters begin |
| 22 | + c0 = 0.8, [description = "Nominal concentration"] |
| 23 | + T0 = 308.5, [description = "Nominal temperature"] |
| 24 | + a1 = 0.2674 |
| 25 | + a21 = 1.815 |
| 26 | + a22 = 0.4682 |
| 27 | + b = 1.5476 |
| 28 | + k0 = 1.05e14 |
| 29 | + ϵ = 34.2894 |
| 30 | + end |
| 31 | + |
| 32 | + @variables begin |
| 33 | + gamma(t), [description = "Reaction speed"] |
| 34 | + xc(t) = c0, [description = "Concentration"] |
| 35 | + xT(t) = T0, [description = "Temperature"] |
| 36 | + xT_c(t) = T0, [description = "Cooling temperature"] |
| 37 | + end |
| 38 | + |
| 39 | + @components begin |
| 40 | + T_c = RealInput() |
| 41 | + c = RealOutput() |
| 42 | + T = RealOutput() |
| 43 | + end |
| 44 | + |
| 45 | + begin |
| 46 | + τ0 = 60 |
| 47 | + wk0 = k0 / c0 |
| 48 | + wϵ = ϵ * T0 |
| 49 | + wa11 = a1 / τ0 |
| 50 | + wa12 = c0 / τ0 |
| 51 | + wa13 = c0 * a1 / τ0 |
| 52 | + wa21 = a21 / τ0 |
| 53 | + wa22 = a22 * T0 / τ0 |
| 54 | + wa23 = T0 * (a21 - b) / τ0 |
| 55 | + wb = b / τ0 |
| 56 | + end |
| 57 | + @equations begin |
| 58 | + gamma ~ xc * wk0 * exp(-wϵ / xT) |
| 59 | + D(xc) ~ -wa11 * xc - wa12 * gamma + wa13 |
| 60 | + D(xT) ~ -wa21 * xT + wa22 * gamma + wa23 + wb * xT_c |
| 61 | + |
| 62 | + xc ~ c.u |
| 63 | + xT ~ T.u |
| 64 | + xT_c ~ T_c.u |
| 65 | + end |
| 66 | +end |
| 67 | + |
| 68 | +begin |
| 69 | + Ftf = tf(1, [(100), 1])^3 |
| 70 | + Fss = ss(Ftf) |
| 71 | + |
| 72 | + "Compute initial state that yields y0 as output" |
| 73 | + function init_filter(y0) |
| 74 | + (; A, B, C, D) = Fss |
| 75 | + Fx0 = -A \ B * y0 |
| 76 | + @assert C * Fx0≈[y0] "C*Fx0*y0 ≈ y0 failed, got $(C*Fx0*y0) ≈ $(y0)]" |
| 77 | + Fx0 |
| 78 | + end |
| 79 | + |
| 80 | + # Create an MTK-compatible constructor |
| 81 | + RefFilter(; y0, name) = ODESystem(Fss; name, x0 = init_filter(y0)) |
| 82 | +end |
| 83 | +@mtkmodel InverseControlledTank begin |
| 84 | + begin |
| 85 | + c0 = 0.8 # "Nominal concentration |
| 86 | + T0 = 308.5 # "Nominal temperature |
| 87 | + x10 = 0.42 |
| 88 | + x20 = 0.01 |
| 89 | + u0 = -0.0224 |
| 90 | + |
| 91 | + c_start = c0 * (1 - x10) # Initial concentration |
| 92 | + T_start = T0 * (1 + x20) # Initial temperature |
| 93 | + c_high_start = c0 * (1 - 0.72) # Reference concentration |
| 94 | + T_c_start = T0 * (1 + u0) # Initial cooling temperature |
| 95 | + end |
| 96 | + @components begin |
| 97 | + ref = Constant(k = 0.25) # Concentration reference |
| 98 | + ff_gain = Gain(k = 1) # To allow turning ff off |
| 99 | + controller = PI(gainPI.k = 10, T = 500) |
| 100 | + tank = MixingTank(xc = c_start, xT = T_start, c0 = c0, T0 = T0) |
| 101 | + inverse_tank = MixingTank(xc = c_start, xT = T_start, c0 = c0, T0 = T0) |
| 102 | + feedback = Feedback() |
| 103 | + add = Add() |
| 104 | + filter = RefFilter(y0 = c_start) # Initialize filter states to the initial concentration |
| 105 | + noise_filter = FirstOrder(k = 1, T = 1, x = T_start) |
| 106 | + # limiter = Gain(k=1) |
| 107 | + limiter = Limiter(y_max = 370, y_min = 250) # Saturate the control input |
| 108 | + end |
| 109 | + @equations begin |
| 110 | + connect(ref.output, :r, filter.input) |
| 111 | + connect(filter.output, inverse_tank.c) |
| 112 | + |
| 113 | + connect(inverse_tank.T_c, ff_gain.input) |
| 114 | + connect(ff_gain.output, :uff, limiter.input) |
| 115 | + connect(limiter.output, add.input1) |
| 116 | + |
| 117 | + connect(controller.ctr_output, :u, add.input2) |
| 118 | + |
| 119 | + #connect(add.output, :u_tot, limiter.input) |
| 120 | + #connect(limiter.output, :v, tank.T_c) |
| 121 | + |
| 122 | + connect(add.output, :u_tot, tank.T_c) |
| 123 | + |
| 124 | + connect(inverse_tank.T, feedback.input1) |
| 125 | + |
| 126 | + connect(tank.T, :y, noise_filter.input) |
| 127 | + |
| 128 | + connect(noise_filter.output, feedback.input2) |
| 129 | + connect(feedback.output, :e, controller.err_input) |
| 130 | + end |
| 131 | +end; |
| 132 | +@named model = InverseControlledTank() |
| 133 | +ssys = structural_simplify(model) |
| 134 | +cm = complete(model) |
| 135 | + |
| 136 | +op = Dict(D(cm.inverse_tank.xT) => 1, |
| 137 | + cm.tank.xc => 0.65) |
| 138 | +tspan = (0.0, 1000.0) |
| 139 | +prob = ODEProblem(ssys, op, tspan) |
| 140 | +sol = solve(prob, Rodas5P()) |
| 141 | + |
| 142 | +@test SciMLBase.successful_retcode(sol) |
| 143 | + |
| 144 | +# plot(sol, idxs=[model.tank.xc, model.tank.xT, model.controller.ctr_output.u], layout=3, sp=[1 2 3]) |
| 145 | +# hline!([prob[cm.ref.k]], label="ref", sp=1) |
| 146 | + |
| 147 | +@test sol(tspan[2], idxs = cm.tank.xc)≈prob[cm.ref.k] atol=1e-2 # Test that the inverse model led to the correct reference |
| 148 | + |
| 149 | +Sf, simplified_sys = Blocks.get_sensitivity_function(model, :y) # This should work without providing an operating opint containing a dummy derivative |
| 150 | +x, p = ModelingToolkit.get_u0_p(simplified_sys, op) |
| 151 | +matrices1 = Sf(x, p, 0) |
| 152 | +matrices2, _ = Blocks.get_sensitivity(model, :y; op) # Test that we get the same result when calling the higher-level API |
| 153 | +@test matrices1.f_x ≈ matrices2.A[1:7, 1:7] |
| 154 | +nsys = get_named_sensitivity(model, :y; op) # Test that we get the same result when calling an even higher-level API |
| 155 | +@test matrices2.A ≈ nsys.A |
| 156 | + |
| 157 | +# Test the same thing for comp sensitivities |
| 158 | + |
| 159 | +Sf, simplified_sys = Blocks.get_comp_sensitivity_function(model, :y) # This should work without providing an operating opint containing a dummy derivative |
| 160 | +x, p = ModelingToolkit.get_u0_p(simplified_sys, op) |
| 161 | +matrices1 = Sf(x, p, 0) |
| 162 | +matrices2, _ = Blocks.get_comp_sensitivity(model, :y; op) # Test that we get the same result when calling the higher-level API |
| 163 | +@test matrices1.f_x ≈ matrices2.A[1:7, 1:7] |
| 164 | +nsys = get_named_comp_sensitivity(model, :y; op) # Test that we get the same result when calling an even higher-level API |
| 165 | +@test matrices2.A ≈ nsys.A |
0 commit comments