@@ -23,15 +23,20 @@ function brusselator_2d_loop(du, u, p, t)
2323 @inbounds for I in CartesianIndices((N, N))
2424 i, j = Tuple(I)
2525 x, y = xyd_brusselator[I[1]], xyd_brusselator[I[2]]
26- ip1, im1, jp1, jm1 = limit(i + 1, N), limit(i - 1, N), limit(j + 1, N),
26+ ip1, im1, jp1,
27+ jm1 = limit(i + 1, N), limit(i - 1, N), limit(j + 1, N),
2728 limit(j - 1, N)
28- du[i, j, 1] = alpha * (u[im1, j, 1] + u[ip1, j, 1] + u[i, jp1, 1] + u[i, jm1, 1] -
29- 4u[i, j, 1]) +
30- B + u[i, j, 1]^2 * u[i, j, 2] - (A + 1) * u[i, j, 1] +
31- brusselator_f(x, y, t)
32- du[i, j, 2] = alpha * (u[im1, j, 2] + u[ip1, j, 2] + u[i, jp1, 2] + u[i, jm1, 2] -
33- 4u[i, j, 2]) +
34- A * u[i, j, 1] - u[i, j, 1]^2 * u[i, j, 2]
29+ du[i,
30+ j,
31+ 1] = alpha * (u[im1, j, 1] + u[ip1, j, 1] + u[i, jp1, 1] + u[i, jm1, 1] -
32+ 4u[i, j, 1]) +
33+ B + u[i, j, 1]^2 * u[i, j, 2] - (A + 1) * u[i, j, 1] +
34+ brusselator_f(x, y, t)
35+ du[i,
36+ j,
37+ 2] = alpha * (u[im1, j, 2] + u[ip1, j, 2] + u[i, jp1, 2] + u[i, jm1, 2] -
38+ 4u[i, j, 2]) +
39+ A * u[i, j, 1] - u[i, j, 1]^2 * u[i, j, 2]
3540 end
3641end
3742p = (3.4, 1.0, 10.0, step(xyd_brusselator))
0 commit comments