@@ -242,46 +242,3 @@ testdict = Dict([:test => 1])
242
242
@test prob_. u0 == [1.0 , 2.0 , 1.0 ]
243
243
@test prob_. p == MTKParameters (sys, [a => 2.0 , b => 1.0 , c => 1.0 ])
244
244
end
245
-
246
- @testset " Initialization System" begin
247
- # Define the Lotka Volterra system which begins at steady state
248
- @parameters t
249
- pars = @parameters a= 1.5 b= 1.0 c= 3.0 d= 1.0 dx_ss= 1e-5
250
-
251
- vars = @variables begin
252
- dx (t),
253
- dy (t),
254
- (x (t) = dx ~ dx_ss), [guess = 0.5 ]
255
- (y (t) = dy ~ 0 ), [guess = - 0.5 ]
256
- end
257
-
258
- D = Differential (t)
259
-
260
- eqs = [dx ~ a * x - b * x * y
261
- dy ~ - c * y + d * x * y
262
- D (x) ~ dx
263
- D (y) ~ dy]
264
-
265
- @named sys = ODESystem (eqs, t, vars, pars)
266
-
267
- sys_simple = structural_simplify (sys)
268
-
269
- # Set up the initialization system
270
- sys_init = initializesystem (sys_simple)
271
-
272
- sys_init_simple = structural_simplify (sys_init)
273
-
274
- prob = NonlinearProblem (sys_init_simple,
275
- get_default_or_guess .(unknowns (sys_init_simple)))
276
-
277
- @test prob. u0 == [0.5 , - 0.5 ]
278
-
279
- sol = solve (prob)
280
- @test sol. retcode == SciMLBase. ReturnCode. Success
281
-
282
- # Confirm for all the unknowns of the non-simplified system
283
- @test all (.≈ (sol[unknowns (sys)], [1e-5 , 0 , 1e-5 / 1.5 , 0 ]; atol = 1e-8 ))
284
-
285
- # Confirm for all the unknowns of the simplified system
286
- @test all (.≈ (sol[unknowns (sys_simple)], [1e-5 / 1.5 , 0 ]; atol = 1e-8 ))
287
- end
0 commit comments