|
| 1 | +# Automatic Conversion of Julia Code to C Functions |
| 2 | + |
| 3 | +Since ModelingToolkit can trace Julia code into MTK IR that can be built and |
| 4 | +compiled via `build_function` to C, this gives us a nifty way to automatically |
| 5 | +generate C functions from Julia code! To see this in action, let's start with |
| 6 | +the Lotka-Volterra equations: |
| 7 | + |
| 8 | +```julia |
| 9 | +using ModelingToolkit |
| 10 | +function lotka_volterra!(du, u, p, t) |
| 11 | + x, y = u |
| 12 | + α, β, δ, γ = p |
| 13 | + du[1] = dx = α*x - β*x*y |
| 14 | + du[2] = dy = -δ*y + γ*x*y |
| 15 | +end |
| 16 | +``` |
| 17 | + |
| 18 | +Now we trace this into ModelingToolkit: |
| 19 | + |
| 20 | +```julia |
| 21 | +@variables t du[1:2] u[1:2] p[1:4] |
| 22 | +lotka_volterra!(du, u, p, t) |
| 23 | +``` |
| 24 | + |
| 25 | +which gives: |
| 26 | + |
| 27 | +```julia |
| 28 | +du = Operation[p₁ * u₁ - (p₂ * u₁) * u₂, -p₃ * u₂ + (p₄ * u₁) * u₂] |
| 29 | +``` |
| 30 | + |
| 31 | +Now we build the equations we want to solve: |
| 32 | + |
| 33 | +```julia |
| 34 | +eqs = @. D(u) ~ du |
| 35 | + |
| 36 | +2-element Array{Equation,1}: |
| 37 | + Equation(derivative(u₁, t), p₁ * u₁ - (p₂ * u₁) * u₂) |
| 38 | + Equation(derivative(u₂, t), -p₃ * u₂ + (p₄ * u₁) * u₂) |
| 39 | +``` |
| 40 | + |
| 41 | +and then we build the function: |
| 42 | + |
| 43 | +```julia |
| 44 | +build_function(eqs, u, p, t, target=ModelingToolkit.CTarget()) |
| 45 | + |
| 46 | +void diffeqf(double* du, double* RHS1, double* RHS2, double RHS3) { |
| 47 | + du[0] = RHS2[0] * RHS1[0] - (RHS2[1] * RHS1[0]) * RHS1[1]; |
| 48 | + du[1] = -(RHS2[2]) * RHS1[1] + (RHS2[3] * RHS1[0]) * RHS1[1]; |
| 49 | +} |
| 50 | +``` |
| 51 | + |
| 52 | +If we want to compile this, we do `expression=Val{false}`: |
| 53 | + |
| 54 | +```julia |
| 55 | +f = build_function(eqs, u, p, t, target=ModelingToolkit.CTarget(),expression=Val{false}) |
| 56 | +``` |
| 57 | + |
| 58 | +now we check it computes the same thing: |
| 59 | + |
| 60 | +```julia |
| 61 | +du = rand(2); du2 = rand(2) |
| 62 | +u = rand(2) |
| 63 | +p = rand(4) |
| 64 | +t = rand() |
| 65 | +f(du,u,p,t) |
| 66 | +lotka_volterra!(du2, u, p, t) |
| 67 | +du == du2 # true! |
| 68 | +``` |
0 commit comments