|
1 | 1 | using Test
|
2 | 2 | using Latexify
|
3 | 3 | using ModelingToolkit
|
| 4 | +using ReferenceTests |
4 | 5 |
|
5 | 6 | ### Tips for generating latex tests:
|
6 | 7 | ### Latexify has an unexported macro:
|
@@ -28,46 +29,24 @@ eqs = [D(x) ~ σ*(y-x)*D(x-y)/D(z),
|
28 | 29 |
|
29 | 30 |
|
30 | 31 | # Latexify.@generate_test latexify(eqs)
|
31 |
| -@test latexify(eqs) == replace( |
32 |
| -raw"\begin{align} |
33 |
| -\frac{dx(t)}{dt} =& \frac{\sigma \mathrm{\frac{d}{d t}}\left( x\left( t \right) - y\left( t \right) \right) \left( y\left( t \right) - x\left( t \right) \right)}{\frac{dz(t)}{dt}} \\ |
34 |
| -0 =& - y\left( t \right) + 0.1 \sigma x\left( t \right) \left( \rho - z\left( t \right) \right) \\ |
35 |
| -\frac{dz(t)}{dt} =& \left( y\left( t \right) \right)^{\frac{2}{3}} x\left( t \right) - \beta z\left( t \right) |
36 |
| -\end{align} |
37 |
| -", "\r\n"=>"\n") |
| 32 | +@test_reference "latexify/10.tex" latexify(eqs) |
38 | 33 |
|
39 | 34 | @variables u[1:3](t)
|
40 | 35 | @parameters p[1:3]
|
41 | 36 | eqs = [D(u[1]) ~ p[3]*(u[2]-u[1]),
|
42 | 37 | 0 ~ p[2]*p[3]*u[1]*(p[1]-u[1])/10-u[2],
|
43 | 38 | D(u[3]) ~ u[1]*u[2]^(2//3) - p[3]*u[3]]
|
44 | 39 |
|
45 |
| -@test latexify(eqs) == replace( |
46 |
| -raw"\begin{align} |
47 |
| -\frac{du{_1}(t)}{dt} =& p{_3} \left( \mathrm{u{_2}}\left( t \right) - \mathrm{u{_1}}\left( t \right) \right) \\ |
48 |
| -0 =& - \mathrm{u{_2}}\left( t \right) + 0.1 \mathrm{u{_1}}\left( t \right) p{_2} p{_3} \left( p{_1} - \mathrm{u{_1}}\left( t \right) \right) \\ |
49 |
| -\frac{du{_3}(t)}{dt} =& \left( \mathrm{u{_2}}\left( t \right) \right)^{\frac{2}{3}} \mathrm{u{_1}}\left( t \right) - \mathrm{u{_3}}\left( t \right) p{_3} |
50 |
| -\end{align} |
51 |
| -", "\r\n"=>"\n") |
| 40 | +@test_reference "latexify/20.tex" latexify(eqs) |
52 | 41 |
|
53 | 42 | eqs = [D(u[1]) ~ p[3]*(u[2]-u[1]),
|
54 | 43 | D(u[2]) ~ p[2]*p[3]*u[1]*(p[1]-u[1])/10-u[2],
|
55 | 44 | D(u[3]) ~ u[1]*u[2]^(2//3) - p[3]*u[3]]
|
56 |
| -@test latexify(eqs) == replace( |
57 |
| -raw"\begin{align} |
58 |
| -\frac{du{_1}(t)}{dt} =& p{_3} \left( \mathrm{u{_2}}\left( t \right) - \mathrm{u{_1}}\left( t \right) \right) \\ |
59 |
| -\frac{du{_2}(t)}{dt} =& - \mathrm{u{_2}}\left( t \right) + 0.1 \mathrm{u{_1}}\left( t \right) p{_2} p{_3} \left( p{_1} - \mathrm{u{_1}}\left( t \right) \right) \\ |
60 |
| -\frac{du{_3}(t)}{dt} =& \left( \mathrm{u{_2}}\left( t \right) \right)^{\frac{2}{3}} \mathrm{u{_1}}\left( t \right) - \mathrm{u{_3}}\left( t \right) p{_3} |
61 |
| -\end{align} |
62 |
| -", "\r\n"=>"\n") |
63 | 45 |
|
| 46 | +@test_reference "latexify/30.tex" latexify(eqs) |
64 | 47 | @parameters t
|
65 | 48 | @variables x(t)
|
66 | 49 | D = Differential(t)
|
67 | 50 | eqs = [D(x) ~ (1+cos(t))/(1+2*x)]
|
68 | 51 |
|
69 |
| -@test latexify(eqs) == replace( |
70 |
| -raw"\begin{align} |
71 |
| -\frac{dx(t)}{dt} =& \frac{\left( 1 + \cos\left( t \right) \right)}{\left( 1 + 2 x\left( t \right) \right)} |
72 |
| -\end{align} |
73 |
| -", "\r\n"=>"\n") |
| 52 | +@test_reference "latexify/40.tex" latexify(eqs) |
0 commit comments