|
| 1 | +using NonlinearSolve |
| 2 | +using NonlinearSolveHomotopyContinuation |
| 3 | +using SciMLBase: NonlinearSolution |
| 4 | + |
| 5 | +alg = HomotopyContinuationJL{false}(; threading = false) |
| 6 | + |
| 7 | +@testset "scalar u" begin |
| 8 | + rhs = function (u, p) |
| 9 | + return (u - 3.0) * (u - p) |
| 10 | + end |
| 11 | + jac = function (u, p) |
| 12 | + return 2u - (p + 3) |
| 13 | + end |
| 14 | + @testset "`NonlinearProblem` - $name" for (jac, name) in [(nothing, "no jac"), (jac, "jac")] |
| 15 | + fn = NonlinearFunction(rhs; jac) |
| 16 | + prob = NonlinearProblem(fn, 1.0, 2.0) |
| 17 | + sol = solve(prob, alg) |
| 18 | + |
| 19 | + @test sol isa NonlinearSolution |
| 20 | + @test sol.u ≈ 2.0 atol = 1e-10 |
| 21 | + |
| 22 | + @testset "no real solutions" begin |
| 23 | + prob = NonlinearProblem(1.0, 1.0) do u, p |
| 24 | + return u * u - 2p * u + p |
| 25 | + end |
| 26 | + sol = solve(prob, alg) |
| 27 | + @test sol.retcode == SciMLBase.ReturnCode.ConvergenceFailure |
| 28 | + end |
| 29 | + end |
| 30 | + |
| 31 | + @testset "`HomotopyContinuationFunction`" begin |
| 32 | + denominator = function (u, p) |
| 33 | + return [u - 0.7] |
| 34 | + end |
| 35 | + polynomialize = function (u, p) |
| 36 | + return sin(u) |
| 37 | + end |
| 38 | + unpolynomialize = function (u, p) |
| 39 | + return [asin(u)] |
| 40 | + end |
| 41 | + fn = HomotopyNonlinearFunction(; denominator, polynomialize, unpolynomialize) do u, p |
| 42 | + return (u - p[1]) * (u - p[2]) |
| 43 | + end |
| 44 | + prob = NonlinearProblem(fn, 0.0, [0.5, 0.7]) |
| 45 | + |
| 46 | + sol = solve(prob, alg) |
| 47 | + @test sin(sol.u[1]) ≈ 0.5 atol=1e-10 |
| 48 | + |
| 49 | + @testset "no valid solutions" begin |
| 50 | + prob2 = remake(prob; p = [0.7, 0.7]) |
| 51 | + sol2 = solve(prob2, alg) |
| 52 | + @test sol2.retcode == SciMLBase.ReturnCode.Infeasible |
| 53 | + end |
| 54 | + |
| 55 | + @testset "closest root" begin |
| 56 | + prob3 = remake(prob; p = [0.5, 0.6], u0 = asin(0.4)) |
| 57 | + sol3 = solve(prob3, alg) |
| 58 | + @test sin(sol3.u) ≈ 0.5 atol = 1e-10 |
| 59 | + prob4 = remake(prob3; u0 = asin(0.7)) |
| 60 | + sol4 = solve(prob4, alg) |
| 61 | + @test sin(sol4.u) ≈ 0.6 atol = 1e-10 |
| 62 | + end |
| 63 | + end |
| 64 | +end |
| 65 | + |
| 66 | +f! = function (du, u, p) |
| 67 | + du[1] = u[1] * u[1] - p[1] * u[2] + u[2] ^ 3 + 1 |
| 68 | + du[2] = u[2] ^ 3 + 2 * p[2] * u[1] * u[2] + u[2] |
| 69 | +end |
| 70 | + |
| 71 | +f = function (u, p) |
| 72 | + [u[1] * u[1] - p[1] * u[2] + u[2] ^ 3 + 1, u[2] ^ 3 + 2 * p[2] * u[1] * u[2] + u[2]] |
| 73 | +end |
| 74 | + |
| 75 | +jac! = function (j, u, p) |
| 76 | + j[1, 1] = 2u[1] |
| 77 | + j[1, 2] = -p[1] + 3 * u[2]^2 |
| 78 | + j[2, 1] = 2 * p[2] * u[2] |
| 79 | + j[2, 2] = 3 * u[2]^2 + 2 * p[2] * u[1] + 1 |
| 80 | +end |
| 81 | + |
| 82 | +jac = function (u, p) |
| 83 | + [2u[1] -p[1] + 3 * u[2]^2; |
| 84 | + 2 * p[2] * u[2] 3 * u[2]^2 + 2 * p[2] * u[1] + 1] |
| 85 | +end |
| 86 | + |
| 87 | +@testset "vector u - $name" for (rhs, jac, name) in [(f, nothing, "oop"), (f, jac, "oop + jac"), (f!, nothing, "iip"), (f!, jac!, "iip + jac")] |
| 88 | + @testset "`NonlinearProblem`" begin |
| 89 | + fn = NonlinearFunction(rhs; jac) |
| 90 | + prob = NonlinearProblem(fn, [1.0, 2.0], [2.0, 3.0]) |
| 91 | + sol = solve(prob, alg) |
| 92 | + @test SciMLBase.successful_retcode(sol) |
| 93 | + @test f(sol.u, prob.p) ≈ [0.0, 0.0] atol = 1e-10 |
| 94 | + |
| 95 | + @testset "no real solutions" begin |
| 96 | + prob2 = remake(prob; p = zeros(2)) |
| 97 | + sol2 = solve(prob2, alg) |
| 98 | + @test !SciMLBase.successful_retcode(sol2) |
| 99 | + end |
| 100 | + end |
| 101 | + |
| 102 | + @testset "`HomotopyNonlinearFunction`" begin |
| 103 | + denominator = function (u, p) |
| 104 | + return [u[1] - p[3], u[2] - p[4]] |
| 105 | + end |
| 106 | + unpolynomialize = function (u, p) |
| 107 | + return [[cbrt(u[1]), sin(u[2] / 40)]] |
| 108 | + end |
| 109 | + polynomialize = function (u, p) |
| 110 | + return [u[1] ^ 3, 40asin(u[2])] |
| 111 | + end |
| 112 | + nlfn = NonlinearFunction(rhs; jac) |
| 113 | + fn = HomotopyNonlinearFunction(nlfn; denominator, polynomialize, unpolynomialize) |
| 114 | + prob = NonlinearProblem(fn, [1.0, 1.0], [2.0, 3.0, 4.0, 5.0]) |
| 115 | + sol = solve(prob, alg) |
| 116 | + @test SciMLBase.successful_retcode(sol) |
| 117 | + @test f(polynomialize(sol.u, prob.p), prob.p) ≈ zeros(2) atol = 1e-10 |
| 118 | + |
| 119 | + @testset "some invalid solutions" begin |
| 120 | + prob2 = remake(prob; p = [2.0, 3.0, polynomialize(sol.u, prob.p)...]) |
| 121 | + sol2 = solve(prob2, alg) |
| 122 | + @test !SciMLBase.successful_retcode(sol2) |
| 123 | + end |
| 124 | + end |
| 125 | +end |
0 commit comments