|
23 | 23 | f, u0 = (u,p) -> u .* u .- 2, @SVector[1.0, 1.0]
|
24 | 24 | sf, su0 = (u,p) -> u * u - 2, 1.0
|
25 | 25 | sol = benchmark_immutable(f, u0)
|
26 |
| -@test sol.retcode === NonlinearSolve.DEFAULT |
| 26 | +@test sol.retcode === Symbol(NonlinearSolve.DEFAULT) |
27 | 27 | @test all(sol.u .* sol.u .- 2 .< 1e-9)
|
28 | 28 | sol = benchmark_mutable(f, u0)
|
29 |
| -@test sol.retcode === NonlinearSolve.DEFAULT |
| 29 | +@test sol.retcode === Symbol(NonlinearSolve.DEFAULT) |
30 | 30 | @test all(sol.u .* sol.u .- 2 .< 1e-9)
|
31 | 31 | sol = benchmark_scalar(sf, su0)
|
32 |
| -@test sol.retcode === NonlinearSolve.DEFAULT |
| 32 | +@test sol.retcode === Symbol(NonlinearSolve.DEFAULT) |
33 | 33 | @test sol.u * sol.u - 2 < 1e-9
|
34 | 34 |
|
35 | 35 | @test (@ballocated benchmark_immutable($f, $u0)) == 0
|
@@ -117,6 +117,7 @@ probN = NonlinearProblem(f, u0)
|
117 | 117 | @test solve(probN, NewtonRaphson(;autodiff=false); immutable = false).u[end] ≈ sqrt(2.0)
|
118 | 118 |
|
119 | 119 | for u0 in [1.0, [1, 1.0]]
|
| 120 | + local f, probN, sol |
120 | 121 | f = (u, p) -> u .* u .- 2.0
|
121 | 122 | probN = NonlinearProblem(f, u0)
|
122 | 123 | sol = sqrt(2) * u0
|
|
0 commit comments