@@ -102,21 +102,21 @@ end
102102 # Minimize f(x) = x₁² + x₂²
103103 # Subject to x₁ - x₂ = 1
104104
105- function constrained_objective (x, p,args ... )
105+ function constrained_objective (x, p)
106106 return x[1 ]^ 2 + x[2 ]^ 2
107107 end
108108
109- function constrained_objective_grad! (g, x, p, args ... )
109+ function constrained_objective_grad! (g, x, p)
110110 g .= 2 .* x .* p[1 ]
111111 return nothing
112112 end
113113
114114 # Constraint: x₁ - x₂ - p[1] = 0 (p[1] = 1 → x₁ - x₂ = 1)
115- function constraint_func (x, p, args ... )
115+ function constraint_func (x, p)
116116 return x[1 ] - x[2 ] - p[1 ]
117117 end
118118
119- function constraint_jac! (J, x,args ... )
119+ function constraint_jac! (J, x)
120120 J[1 , 1 ] = 1.0
121121 J[1 , 2 ] = - 1.0
122122 return nothing
159159 x0 = [0.0 , 0.0 ]
160160 p= Float64[] # No parameters provided
161161 # Create a problem with NullParameters
162- optf = OptimizationFunction ((x, p, args ... ) -> sum (x.^ 2 ),
163- grad= (grad, x, p, args ... ) -> (grad .= 2.0 .* x))
162+ optf = OptimizationFunction ((x, p) -> sum (x.^ 2 ),
163+ grad= (grad, x, p) -> (grad .= 2.0 .* x))
164164 prob = OptimizationProblem (optf, x0,p) # No parameters provided
165165
166166 opt = ODEGradientDescent ()
262262 x0 = [0.5 ]
263263 p = [1.0 ]
264264
265- single_var_func (x, p,args ... ) = (x[1 ] - p[1 ])^ 2
266- single_var_grad! (grad, x, p,args ... ) = (grad[1 ] = 2.0 * (x[1 ] - p[1 ]))
265+ single_var_func (x, p) = (x[1 ] - p[1 ])^ 2
266+ single_var_grad! (grad, x, p) = (grad[1 ] = 2.0 * (x[1 ] - p[1 ]))
267267
268268 optf = OptimizationFunction (single_var_func; grad= single_var_grad!)
269269 prob = OptimizationProblem (optf, x0, p)
0 commit comments