@@ -7,16 +7,6 @@ using Test
7
7
x0 = zeros (2 )
8
8
_p = [1.0 , 100.0 ]
9
9
l1 = rosenbrock (x0, _p)
10
- f = OptimizationFunction (rosenbrock, Optimization. AutoForwardDiff ())
11
- prob = OptimizationProblem (f, x0, _p)
12
- Random. seed! (1234 )
13
- sol = solve (prob, SimulatedAnnealing ())
14
- @test 10 * sol. minimum < l1
15
-
16
- Random. seed! (1234 )
17
- prob = OptimizationProblem (f, x0, _p, lb = [- 1.0 , - 1.0 ], ub = [0.8 , 0.8 ])
18
- sol = solve (prob, SAMIN ())
19
- @test 10 * sol. minimum < l1
20
10
21
11
prob = OptimizationProblem (rosenbrock, x0, _p)
22
12
sol = solve (prob,
@@ -25,12 +15,17 @@ using Test
25
15
b = 0.5 )))
26
16
@test 10 * sol. minimum < l1
27
17
28
- cons = (res, x, p) -> res .= [x[1 ]^ 2 + x[2 ]^ 2 ]
29
- optprob = OptimizationFunction (rosenbrock, Optimization. AutoForwardDiff (); cons = cons)
30
- optprob = OptimizationFunction (rosenbrock, Optimization. AutoModelingToolkit ();
31
- cons = cons)
18
+ f = OptimizationFunction (rosenbrock, Optimization. AutoForwardDiff ())
32
19
33
- prob = OptimizationProblem (optprob, x0, _p)
20
+ Random. seed! (1234 )
21
+ prob = OptimizationProblem (f, x0, _p, lb = [- 1.0 , - 1.0 ], ub = [0.8 , 0.8 ])
22
+ sol = solve (prob, SAMIN ())
23
+ @test 10 * sol. minimum < l1
24
+
25
+ prob = OptimizationProblem (f, x0, _p)
26
+ Random. seed! (1234 )
27
+ sol = solve (prob, SimulatedAnnealing ())
28
+ @test 10 * sol. minimum < l1
34
29
35
30
sol = solve (prob, Optim. BFGS ())
36
31
@test 10 * sol. minimum < l1
@@ -41,6 +36,10 @@ using Test
41
36
sol = solve (prob, Optim. KrylovTrustRegion ())
42
37
@test 10 * sol. minimum < l1
43
38
39
+ cons = (res, x, p) -> res .= [x[1 ]^ 2 + x[2 ]^ 2 ]
40
+ optprob = OptimizationFunction (rosenbrock, Optimization. AutoModelingToolkit ();
41
+ cons = cons)
42
+
44
43
prob = OptimizationProblem (optprob, x0, _p, lcons = [- Inf ], ucons = [Inf ])
45
44
sol = solve (prob, IPNewton ())
46
45
@test 10 * sol. minimum < l1
0 commit comments