@@ -20,8 +20,8 @@ using LinearAlgebra
2020 f_autodiff = OptimizationFunction (f, ADTypes. AutoForwardDiff ())
2121 prob_auto = OptimizationProblem (f_autodiff, x0, p)
2222
23- for opt in (ODEGradientDescent (), RKChebyshevDescent (), RKAccelerated (), PRKChebyshevDescent ())
24- sol = solve (prob_auto, opt; η = 0.01 , dt= 0.01 , tmax = 1000 , maxiters= 50_000 )
23+ for opt in (ODEGradientDescent (), RKChebyshevDescent (), RKAccelerated (), HighOrderDescent ())
24+ sol = solve (prob_auto, opt; dt= 0.01 , maxiters= 50_000 )
2525 @test sol. u ≈ [0.0 , 0.0 ] atol= 1e-2
2626 @test sol. objective ≈ 0.0 atol= 1e-2
2727 @test sol. retcode == ReturnCode. Success
@@ -30,8 +30,8 @@ using LinearAlgebra
3030 f_manual = OptimizationFunction (f, SciMLBase. NoAD (); grad= g!)
3131 prob_manual = OptimizationProblem (f_manual, x0)
3232
33- for opt in (ODEGradientDescent (), RKChebyshevDescent (), RKAccelerated (), PRKChebyshevDescent ())
34- sol = solve (prob_manual, opt; η = 0.01 , dt= 0.01 , tmax = 1000 , maxiters= 50_000 )
33+ for opt in (ODEGradientDescent (), RKChebyshevDescent (), RKAccelerated (), HighOrderDescent ())
34+ sol = solve (prob_manual, opt; dt= 0.01 , maxiters= 50_000 )
3535 @test sol. u ≈ [0.0 , 0.0 ] atol= 1e-2
3636 @test sol. objective ≈ 0.0 atol= 1e-2
3737 @test sol. retcode == ReturnCode. Success
@@ -40,8 +40,8 @@ using LinearAlgebra
4040 f_fail = OptimizationFunction (f, SciMLBase. NoAD ())
4141 prob_fail = OptimizationProblem (f_fail, x0)
4242
43- for opt in (ODEGradientDescent (), RKChebyshevDescent (), RKAccelerated (), PRKChebyshevDescent ())
44- @test_throws ErrorException solve (prob_fail, opt; η = 0.01 , dt= 0.001 , tmax = 10_000.0 , maxiters= 20_000 )
43+ for opt in (ODEGradientDescent (), RKChebyshevDescent (), RKAccelerated (), HighOrderDescent ())
44+ @test_throws ErrorException solve (prob_fail, opt; dt= 0.001 , maxiters= 20_000 )
4545 end
4646
4747end
0 commit comments