|
| 1 | +# Optimization Problem Reusage and Caching Interface |
| 2 | + |
| 3 | +One of the key features for high-performance optimization workflows is the ability to reuse and modify existing optimization problems without full reconstruction. Optimization.jl provides several mechanisms for efficiently reusing optimization setups, particularly through the `reinit!` function and caching interfaces. |
| 4 | + |
| 5 | +## Basic Reusage with `reinit!` |
| 6 | + |
| 7 | +The `reinit!` function allows you to modify an existing optimization problem and reuse the solver setup. This is particularly useful for parameter sweeps, sensitivity analysis, and warm-starting optimization problems. |
| 8 | + |
| 9 | +```julia |
| 10 | +using Optimization, OptimizationOptimJL |
| 11 | + |
| 12 | +# Define the Rosenbrock function |
| 13 | +rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2 |
| 14 | + |
| 15 | +# Initial setup |
| 16 | +x0 = [0.0, 0.0] |
| 17 | +p = [1.0, 100.0] |
| 18 | +prob = OptimizationProblem(rosenbrock, x0, p) |
| 19 | + |
| 20 | +# Solve the first optimization |
| 21 | +sol1 = solve(prob, BFGS()) |
| 22 | + |
| 23 | +# Reinitialize with new parameters without reconstructing the entire problem |
| 24 | +reinit!(prob, x0, p = [2.0, 100.0]) |
| 25 | +sol2 = solve(prob, BFGS()) |
| 26 | + |
| 27 | +# Reinitialize with new initial conditions |
| 28 | +reinit!(prob, [1.0, 1.0], p = [1.0, 100.0]) |
| 29 | +sol3 = solve(prob, BFGS()) |
| 30 | +``` |
| 31 | + |
| 32 | +## Parameter Sweeps |
| 33 | + |
| 34 | +The `reinit!` function is particularly powerful for parameter sweeps where you need to solve the same optimization problem with different parameter values: |
| 35 | + |
| 36 | +```julia |
| 37 | +using Optimization, OptimizationOptimJL |
| 38 | + |
| 39 | +# Define optimization problem |
| 40 | +f(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2 |
| 41 | +x0 = [0.0, 0.0] |
| 42 | +prob = OptimizationProblem(f, x0, [1.0, 100.0]) |
| 43 | + |
| 44 | +# Parameter sweep |
| 45 | +parameter_values = [50.0, 100.0, 150.0, 200.0] |
| 46 | +solutions = [] |
| 47 | + |
| 48 | +for p_val in parameter_values |
| 49 | + reinit!(prob, x0, p = [1.0, p_val]) |
| 50 | + sol = solve(prob, BFGS()) |
| 51 | + push!(solutions, sol) |
| 52 | +end |
| 53 | + |
| 54 | +# Access results |
| 55 | +for (i, sol) in enumerate(solutions) |
| 56 | + println("Parameter $(parameter_values[i]): Minimum at $(sol.u)") |
| 57 | +end |
| 58 | +``` |
| 59 | + |
| 60 | +## Warm-Starting Optimization |
| 61 | + |
| 62 | +You can use previous solutions as starting points for new optimizations, which can significantly improve convergence: |
| 63 | + |
| 64 | +```julia |
| 65 | +using Optimization, OptimizationOptimJL |
| 66 | + |
| 67 | +# Define a more complex optimization problem |
| 68 | +complex_objective(x, p) = sum((x[i] - p[i])^2 for i in 1:length(x)) + |
| 69 | + sum(sin(x[i]) for i in 1:length(x)) |
| 70 | + |
| 71 | +# Initial problem |
| 72 | +n = 10 |
| 73 | +x0 = zeros(n) |
| 74 | +p0 = ones(n) |
| 75 | +prob = OptimizationProblem(complex_objective, x0, p0) |
| 76 | + |
| 77 | +# Solve initial problem |
| 78 | +sol1 = solve(prob, BFGS()) |
| 79 | + |
| 80 | +# Use previous solution as warm start for new parameter set |
| 81 | +new_params = 1.1 * ones(n) # Slightly different parameters |
| 82 | +reinit!(prob, sol1.u, p = new_params) # Warm start with previous solution |
| 83 | +sol2 = solve(prob, BFGS()) |
| 84 | + |
| 85 | +# Compare convergence |
| 86 | +println("Initial problem converged in $(sol1.iterations) iterations") |
| 87 | +println("Warm-started problem converged in $(sol2.iterations) iterations") |
| 88 | +``` |
| 89 | + |
| 90 | +## Advanced Caching with Iterator Interface |
| 91 | + |
| 92 | +For more advanced use cases, you can use the solver's iterator interface to have fine-grained control over the optimization process: |
| 93 | + |
| 94 | +```julia |
| 95 | +using Optimization, OptimizationOptimJL |
| 96 | + |
| 97 | +# Setup optimization problem |
| 98 | +rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2 |
| 99 | +prob = OptimizationProblem(rosenbrock, [0.0, 0.0], [1.0, 100.0]) |
| 100 | + |
| 101 | +# Initialize the solver (this creates the cache) |
| 102 | +cache = init(prob, BFGS()) |
| 103 | + |
| 104 | +# Perform optimization steps manually |
| 105 | +for i in 1:10 |
| 106 | + step!(cache) |
| 107 | + println("Step $i: Current point = $(cache.u), Objective = $(cache.objective)") |
| 108 | +end |
| 109 | + |
| 110 | +# Get final solution |
| 111 | +sol = solve!(cache) |
| 112 | +``` |
| 113 | + |
| 114 | +## Performance Benefits |
| 115 | + |
| 116 | +The reusage interface provides several performance advantages: |
| 117 | + |
| 118 | +1. **Reduced Memory Allocation**: Reusing problem structures avoids repeated memory allocations |
| 119 | +2. **Warm Starting**: Using previous solutions as initial guesses can reduce iterations needed |
| 120 | +3. **Solver State Preservation**: Internal solver states (like Hessian approximations) can be preserved |
| 121 | +4. **Batch Processing**: Efficient processing of multiple related optimization problems |
| 122 | + |
| 123 | +## When to Use `reinit!` vs `remake` |
| 124 | + |
| 125 | +- **Use `reinit!`** when: |
| 126 | + - You want to preserve solver internal state |
| 127 | + - Parameters or initial conditions change slightly |
| 128 | + - You're doing parameter sweeps or sensitivity analysis |
| 129 | + - Performance is critical |
| 130 | + |
| 131 | +- **Use `remake`** when: |
| 132 | + - The problem structure changes significantly |
| 133 | + - You need a completely fresh start |
| 134 | + - Problem dimensions change |
| 135 | + |
| 136 | +## Example: Complete Parameter Study |
| 137 | + |
| 138 | +Here's a comprehensive example showing how to efficiently perform a parameter study: |
| 139 | + |
| 140 | +```julia |
| 141 | +using Optimization, OptimizationOptimJL, Plots |
| 142 | + |
| 143 | +# Define objective function |
| 144 | +objective(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2 + p[3] * x[1] * x[2] |
| 145 | + |
| 146 | +# Setup base problem |
| 147 | +x0 = [0.0, 0.0] |
| 148 | +base_params = [1.0, 100.0, 0.0] |
| 149 | +prob = OptimizationProblem(objective, x0, base_params) |
| 150 | + |
| 151 | +# Parameter study over the third parameter |
| 152 | +param3_range = -5.0:0.5:5.0 |
| 153 | +results = Dict() |
| 154 | + |
| 155 | +for p3 in param3_range |
| 156 | + # Efficiently update only the changing parameter |
| 157 | + new_params = [1.0, 100.0, p3] |
| 158 | + reinit!(prob, x0, p = new_params) |
| 159 | + |
| 160 | + # Solve and store results |
| 161 | + sol = solve(prob, BFGS()) |
| 162 | + results[p3] = (solution = sol.u, objective = sol.objective) |
| 163 | +end |
| 164 | + |
| 165 | +# Analyze results |
| 166 | +objectives = [results[p3].objective for p3 in param3_range] |
| 167 | +plot(param3_range, objectives, xlabel="Parameter 3", ylabel="Objective Value", |
| 168 | + title="Parameter Study using reinit!") |
| 169 | +``` |
| 170 | + |
| 171 | +This reusage interface makes Optimization.jl highly efficient for production optimization workflows where the same problem structure is solved repeatedly with different parameters or initial conditions. |
0 commit comments