@@ -88,44 +88,6 @@ Hessian is not defined via ForwardDiff.
8888"""
8989AutoForwardDiff
9090
91- """
92- AutoModelingToolkit <: AbstractADType
93-
94- An AbstractADType choice for use in OptimizationFunction for automatically
95- generating the unspecified derivative functions. Usage:
96-
97- ```julia
98- OptimizationFunction(f, AutoModelingToolkit(); kwargs...)
99- ```
100-
101- This uses the [ModelingToolkit.jl](https://github.com/SciML/ModelingToolkit.jl)
102- package's `modelingtookitize` functionality to generate the derivatives and other fields of an `OptimizationFunction`.
103- This backend creates the symbolic expressions for the objective and its derivatives as well as
104- the constraints and their derivatives. Through `structural_simplify`, it enforces simplifications
105- that can reduce the number of operations needed to compute the derivatives of the constraints. This automatically
106- generates the expression graphs that some solver interfaces through OptimizationMOI like
107- [AmplNLWriter.jl](https://github.com/jump-dev/AmplNLWriter.jl) require.
108-
109- - Compatible with GPUs
110- - Compatible with Hessian-based optimization
111- - Compatible with Hv-based optimization
112- - Compatible with constraints
113-
114- Note that only the unspecified derivative functions are defined. For example,
115- if a `hess` function is supplied to the `OptimizationFunction`, then the
116- Hessian is not generated via ModelingToolkit.
117-
118- ## Constructor
119-
120- ```julia
121- AutoModelingToolkit(false, false)
122- ```
123-
124- - `obj_sparse`: to indicate whether the objective hessian is sparse.
125- - `cons_sparse`: to indicate whether the constraints' jacobian and hessian are sparse.
126-
127- """
128- AutoModelingToolkit
12991
13092"""
13193 AutoReverseDiff <: AbstractADType
0 commit comments