Skip to content

Commit f922ede

Browse files
Update reusage_interface.md
1 parent 315812e commit f922ede

File tree

1 file changed

+51
-141
lines changed

1 file changed

+51
-141
lines changed
Lines changed: 51 additions & 141 deletions
Original file line numberDiff line numberDiff line change
@@ -1,171 +1,81 @@
11
# Optimization Problem Reusage and Caching Interface
22

3-
One of the key features for high-performance optimization workflows is the ability to reuse and modify existing optimization problems without full reconstruction. Optimization.jl provides several mechanisms for efficiently reusing optimization setups, particularly through the `reinit!` function and caching interfaces.
43

5-
## Basic Reusage with `reinit!`
4+
## Reusing Optimization Caches with `reinit!`
65

7-
The `reinit!` function allows you to modify an existing optimization problem and reuse the solver setup. This is particularly useful for parameter sweeps, sensitivity analysis, and warm-starting optimization problems.
6+
The `reinit!` function allows you to efficiently reuse an existing optimization cache with new parameters or initial values. This is particularly useful when solving similar optimization problems repeatedly with different parameter values, as it avoids the overhead of creating a new cache from scratch.
87

9-
```julia
10-
using Optimization, OptimizationOptimJL
11-
12-
# Define the Rosenbrock function
13-
rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2
8+
### Basic Usage
149

15-
# Initial setup
16-
x0 = [0.0, 0.0]
10+
```@example reinit
11+
# Create initial problem and cache
12+
using Optimization, OptimizationOptimJL
13+
rosenbrock(u, p) = (p[1] - u[1])^2 + p[2] * (u[2] - u[1]^2)^2
14+
u0 = zeros(2)
1715
p = [1.0, 100.0]
18-
prob = OptimizationProblem(rosenbrock, x0, p)
1916
20-
# Solve the first optimization
21-
sol1 = solve(prob, BFGS())
17+
optf = OptimizationFunction(rosenbrock, Optimization.AutoForwardDiff())
18+
prob = OptimizationProblem(optf, u0, p)
2219
23-
# Reinitialize with new parameters without reconstructing the entire problem
24-
reinit!(prob, x0, p = [2.0, 100.0])
25-
sol2 = solve(prob, BFGS())
20+
# Initialize cache and solve
21+
cache = Optimization.init(prob, Optim.BFGS())
22+
sol = Optimization.solve!(cache)
2623
27-
# Reinitialize with new initial conditions
28-
reinit!(prob, [1.0, 1.0], p = [1.0, 100.0])
29-
sol3 = solve(prob, BFGS())
24+
# Reinitialize cache with new parameters
25+
cache = Optimization.reinit!(cache; p = [2.0, 50.0])
26+
sol2 = Optimization.solve!(cache)
3027
```
3128

32-
## Parameter Sweeps
29+
### Supported Arguments
3330

34-
The `reinit!` function is particularly powerful for parameter sweeps where you need to solve the same optimization problem with different parameter values:
31+
The `reinit!` function supports updating various fields of the optimization cache:
3532

36-
```julia
37-
using Optimization, OptimizationOptimJL
33+
- `u0`: New initial values for the optimization variables
34+
- `p`: New parameter values
35+
- `lb`: New lower bounds (if applicable)
36+
- `ub`: New upper bounds (if applicable)
37+
- `lcons`: New lower bounds for constraints (if applicable)
38+
- `ucons`: New upper bounds for constraints (if applicable)
3839

39-
# Define optimization problem
40-
f(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2
41-
x0 = [0.0, 0.0]
42-
prob = OptimizationProblem(f, x0, [1.0, 100.0])
40+
### Example: Parameter Sweep
4341

44-
# Parameter sweep
45-
parameter_values = [50.0, 100.0, 150.0, 200.0]
46-
solutions = []
42+
```@example reinit
43+
# Solve for multiple parameter values efficiently
44+
results = []
45+
p_values = [[1.0, 100.0], [2.0, 100.0], [3.0, 100.0]]
4746
48-
for p_val in parameter_values
49-
reinit!(prob, x0, p = [1.0, p_val])
50-
sol = solve(prob, BFGS())
51-
push!(solutions, sol)
52-
end
47+
# Create initial cache
48+
cache = Optimization.init(prob, Optim.BFGS())
5349
54-
# Access results
55-
for (i, sol) in enumerate(solutions)
56-
println("Parameter $(parameter_values[i]): Minimum at $(sol.u)")
50+
for p in p_values
51+
cache = Optimization.reinit!(cache; p = p)
52+
sol = Optimization.solve!(cache)
53+
push!(results, (p = p, u = sol.u, objective = sol.objective))
5754
end
5855
```
5956

60-
## Warm-Starting Optimization
61-
62-
You can use previous solutions as starting points for new optimizations, which can significantly improve convergence:
57+
### Example: Updating Initial Values
6358

6459
```julia
65-
using Optimization, OptimizationOptimJL
66-
67-
# Define a more complex optimization problem
68-
complex_objective(x, p) = sum((x[i] - p[i])^2 for i in 1:length(x)) +
69-
sum(sin(x[i]) for i in 1:length(x))
70-
71-
# Initial problem
72-
n = 10
73-
x0 = zeros(n)
74-
p0 = ones(n)
75-
prob = OptimizationProblem(complex_objective, x0, p0)
76-
77-
# Solve initial problem
78-
sol1 = solve(prob, BFGS())
79-
80-
# Use previous solution as warm start for new parameter set
81-
new_params = 1.1 * ones(n) # Slightly different parameters
82-
reinit!(prob, sol1.u, p = new_params) # Warm start with previous solution
83-
sol2 = solve(prob, BFGS())
84-
85-
# Compare convergence
86-
println("Initial problem converged in $(sol1.iterations) iterations")
87-
println("Warm-started problem converged in $(sol2.iterations) iterations")
88-
```
89-
90-
## Advanced Caching with Iterator Interface
91-
92-
For more advanced use cases, you can use the solver's iterator interface to have fine-grained control over the optimization process:
60+
# Warm-start optimization from different initial points
61+
u0_values = [[0.0, 0.0], [0.5, 0.5], [1.0, 1.0]]
9362

94-
```julia
95-
using Optimization, OptimizationOptimJL
96-
97-
# Setup optimization problem
98-
rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2
99-
prob = OptimizationProblem(rosenbrock, [0.0, 0.0], [1.0, 100.0])
100-
101-
# Initialize the solver (this creates the cache)
102-
cache = init(prob, BFGS())
103-
104-
# Perform optimization steps manually
105-
for i in 1:10
106-
step!(cache)
107-
println("Step $i: Current point = $(cache.u), Objective = $(cache.objective)")
63+
for u0 in u0_values
64+
cache = Optimization.reinit!(cache; u0 = u0)
65+
sol = Optimization.solve!(cache)
66+
println("Starting from ", u0, " converged to ", sol.u)
10867
end
109-
110-
# Get final solution
111-
sol = solve!(cache)
11268
```
11369

114-
## Performance Benefits
115-
116-
The reusage interface provides several performance advantages:
117-
118-
1. **Reduced Memory Allocation**: Reusing problem structures avoids repeated memory allocations
119-
2. **Warm Starting**: Using previous solutions as initial guesses can reduce iterations needed
120-
3. **Solver State Preservation**: Internal solver states (like Hessian approximations) can be preserved
121-
4. **Batch Processing**: Efficient processing of multiple related optimization problems
70+
### Performance Benefits
12271

123-
## When to Use `reinit!` vs `remake`
72+
Using `reinit!` is more efficient than creating a new problem and cache for each parameter value, especially when:
73+
- The optimization algorithm maintains internal state that can be reused
74+
- The problem structure remains the same (only parameter values change)
12475

125-
- **Use `reinit!`** when:
126-
- You want to preserve solver internal state
127-
- Parameters or initial conditions change slightly
128-
- You're doing parameter sweeps or sensitivity analysis
129-
- Performance is critical
130-
131-
- **Use `remake`** when:
132-
- The problem structure changes significantly
133-
- You need a completely fresh start
134-
- Problem dimensions change
135-
136-
## Example: Complete Parameter Study
137-
138-
Here's a comprehensive example showing how to efficiently perform a parameter study:
139-
140-
```julia
141-
using Optimization, OptimizationOptimJL, Plots
142-
143-
# Define objective function
144-
objective(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2 + p[3] * x[1] * x[2]
145-
146-
# Setup base problem
147-
x0 = [0.0, 0.0]
148-
base_params = [1.0, 100.0, 0.0]
149-
prob = OptimizationProblem(objective, x0, base_params)
150-
151-
# Parameter study over the third parameter
152-
param3_range = -5.0:0.5:5.0
153-
results = Dict()
154-
155-
for p3 in param3_range
156-
# Efficiently update only the changing parameter
157-
new_params = [1.0, 100.0, p3]
158-
reinit!(prob, x0, p = new_params)
159-
160-
# Solve and store results
161-
sol = solve(prob, BFGS())
162-
results[p3] = (solution = sol.u, objective = sol.objective)
163-
end
164-
165-
# Analyze results
166-
objectives = [results[p3].objective for p3 in param3_range]
167-
plot(param3_range, objectives, xlabel="Parameter 3", ylabel="Objective Value",
168-
title="Parameter Study using reinit!")
169-
```
76+
### Notes
17077

171-
This reusage interface makes Optimization.jl highly efficient for production optimization workflows where the same problem structure is solved repeatedly with different parameters or initial conditions.
78+
- The `reinit!` function modifies the cache in-place and returns it for convenience
79+
- Not all fields need to be specified; only provide the ones you want to update
80+
- The function is particularly useful in iterative algorithms, parameter estimation, and when solving families of related optimization problems
81+
- For creating a new problem with different parameters (rather than modifying a cache), use `remake` on the `OptimizationProblem` instead

0 commit comments

Comments
 (0)