diff --git a/.typos.toml b/.typos.toml index 4a3634b97..fdf560903 100644 --- a/.typos.toml +++ b/.typos.toml @@ -1,11 +1,79 @@ [default.extend-words] -AGS = "AGS" -# Additional SciML terms +# Julia-specific functions +indexin = "indexin" +findfirst = "findfirst" +findlast = "findlast" +eachindex = "eachindex" setp = "setp" getp = "getp" -indexin = "indexin" +setu = "setu" +getu = "getu" + +# Mathematical/scientific terms +jacobian = "jacobian" +hessian = "hessian" +eigenvalue = "eigenvalue" +eigenvector = "eigenvector" +discretization = "discretization" +linearization = "linearization" +parameterized = "parameterized" +discretized = "discretized" +vectorized = "vectorized" + +# Common variable patterns in Julia/SciML ists = "ists" ispcs = "ispcs" +osys = "osys" +rsys = "rsys" +usys = "usys" +fsys = "fsys" eqs = "eqs" rhs = "rhs" -MTK = "MTK" \ No newline at end of file +lhs = "lhs" +ode = "ode" +pde = "pde" +sde = "sde" +dde = "dde" +bvp = "bvp" +ivp = "ivp" + +# Common abbreviations +tol = "tol" +rtol = "rtol" +atol = "atol" +idx = "idx" +jdx = "jdx" +prev = "prev" +curr = "curr" +init = "init" +tmp = "tmp" +vec = "vec" +arr = "arr" +dt = "dt" +du = "du" +dx = "dx" +dy = "dy" +dz = "dz" + +# Algorithm/type suffixes +alg = "alg" +prob = "prob" +sol = "sol" +cb = "cb" +opts = "opts" +args = "args" +kwargs = "kwargs" + +# Scientific abbreviations +ND = "ND" +nd = "nd" +MTK = "MTK" +ODE = "ODE" +PDE = "PDE" +SDE = "SDE" + +# Optimization specific terms +TikTak = "TikTak" # Legitimate algorithm name in MultistartOptimization +Tak = "Tak" # Part of TikTak algorithm name +opf = "opf" # Optimal Power Flow abbreviation +AGS = "AGS" # Legitimate NLopt algorithm name diff --git a/lib/OptimizationNLPModels/src/OptimizationNLPModels.jl b/lib/OptimizationNLPModels/src/OptimizationNLPModels.jl index 65e67be20..946707b0f 100644 --- a/lib/OptimizationNLPModels/src/OptimizationNLPModels.jl +++ b/lib/OptimizationNLPModels/src/OptimizationNLPModels.jl @@ -7,7 +7,7 @@ using Reexport OptimizationFunction(nlpmodel::AbstractNLPModel, adtype::AbstractADType = NoAD()) Returns an `OptimizationFunction` from the `NLPModel` defined in `nlpmodel` where the -available derivates are re-used from the model, and the rest are populated with the +available derivatives are re-used from the model, and the rest are populated with the Automatic Differentiation backend specified by `adtype`. """ function SciMLBase.OptimizationFunction(nlpmodel::AbstractNLPModel,