@@ -30,7 +30,7 @@ function OptimizationBase.instantiate_function(
3030 adtype, soadtype = OptimizationBase. generate_adtype (adtype)
3131
3232 if g == true && f. grad === nothing
33- prep_grad = prepare_gradient (f. f, adtype, x, Constant (p), strict= Val (false ))
33+ prep_grad = prepare_gradient (f. f, adtype, x, Constant (p), strict = Val (false ))
3434 function grad (res, θ)
3535 gradient! (f. f, res, prep_grad, adtype, θ, Constant (p))
3636 end
@@ -47,7 +47,7 @@ function OptimizationBase.instantiate_function(
4747
4848 if fg == true && f. fg === nothing
4949 if g == false
50- prep_grad = prepare_gradient (f. f, adtype, x, Constant (p), strict= Val (false ))
50+ prep_grad = prepare_gradient (f. f, adtype, x, Constant (p), strict = Val (false ))
5151 end
5252 function fg! (res, θ)
5353 (y, _) = value_and_gradient! (f. f, res, prep_grad, adtype, θ, Constant (p))
@@ -68,7 +68,7 @@ function OptimizationBase.instantiate_function(
6868 hess_sparsity = f. hess_prototype
6969 hess_colors = f. hess_colorvec
7070 if h == true && f. hess === nothing
71- prep_hess = prepare_hessian (f. f, soadtype, x, Constant (p), strict= Val (false ))
71+ prep_hess = prepare_hessian (f. f, soadtype, x, Constant (p), strict = Val (false ))
7272 function hess (res, θ)
7373 hessian! (f. f, res, prep_hess, soadtype, θ, Constant (p))
7474 end
@@ -85,13 +85,17 @@ function OptimizationBase.instantiate_function(
8585
8686 if fgh == true && f. fgh === nothing
8787 function fgh! (G, H, θ)
88- (y, _, _) = value_derivative_and_second_derivative! (
88+ (y,
89+ _,
90+ _) = value_derivative_and_second_derivative! (
8991 f. f, G, H, prep_hess, soadtype, θ, Constant (p))
9092 return y
9193 end
9294 if p != = SciMLBase. NullParameters () && p != = nothing
9395 function fgh! (G, H, θ, p)
94- (y, _, _) = value_derivative_and_second_derivative! (
96+ (y,
97+ _,
98+ _) = value_derivative_and_second_derivative! (
9599 f. f, G, H, prep_hess, soadtype, θ, Constant (p))
96100 return y
97101 end
@@ -143,7 +147,7 @@ function OptimizationBase.instantiate_function(
143147 cons_jac_prototype = f. cons_jac_prototype
144148 cons_jac_colorvec = f. cons_jac_colorvec
145149 if cons != = nothing && cons_j == true && f. cons_j === nothing
146- prep_jac = prepare_jacobian (cons_oop, adtype, x, strict= Val (false ))
150+ prep_jac = prepare_jacobian (cons_oop, adtype, x, strict = Val (false ))
147151 function cons_j! (J, θ)
148152 jacobian! (cons_oop, J, prep_jac, adtype, θ)
149153 if size (J, 1 ) == 1
@@ -157,7 +161,8 @@ function OptimizationBase.instantiate_function(
157161 end
158162
159163 if f. cons_vjp === nothing && cons_vjp == true && cons != = nothing
160- prep_pullback = prepare_pullback (cons_oop, adtype, x, (ones (eltype (x), num_cons),), strict= Val (false ))
164+ prep_pullback = prepare_pullback (
165+ cons_oop, adtype, x, (ones (eltype (x), num_cons),), strict = Val (false ))
161166 function cons_vjp! (J, θ, v)
162167 pullback! (cons_oop, (J,), prep_pullback, adtype, θ, (v,))
163168 end
@@ -169,7 +174,7 @@ function OptimizationBase.instantiate_function(
169174
170175 if cons != = nothing && f. cons_jvp === nothing && cons_jvp == true
171176 prep_pushforward = prepare_pushforward (
172- cons_oop, adtype, x, (ones (eltype (x), length (x)),), strict= Val (false ))
177+ cons_oop, adtype, x, (ones (eltype (x), length (x)),), strict = Val (false ))
173178 function cons_jvp! (J, θ, v)
174179 pushforward! (cons_oop, (J,), prep_pushforward, adtype, θ, (v,))
175180 end
@@ -182,7 +187,8 @@ function OptimizationBase.instantiate_function(
182187 conshess_sparsity = f. cons_hess_prototype
183188 conshess_colors = f. cons_hess_colorvec
184189 if cons != = nothing && cons_h == true && f. cons_h === nothing
185- prep_cons_hess = [prepare_hessian (cons_oop, soadtype, x, Constant (i), strict= Val (false ))
190+ prep_cons_hess = [prepare_hessian (
191+ cons_oop, soadtype, x, Constant (i), strict = Val (false ))
186192 for i in 1 : num_cons]
187193
188194 function cons_h! (H, θ)
@@ -201,7 +207,7 @@ function OptimizationBase.instantiate_function(
201207 if f. lag_h === nothing && cons != = nothing && lag_h == true
202208 lag_extras = prepare_hessian (
203209 lagrangian, soadtype, x, Constant (one (eltype (x))),
204- Constant (ones (eltype (x), num_cons)), Constant (p), strict= Val (false ))
210+ Constant (ones (eltype (x), num_cons)), Constant (p), strict = Val (false ))
205211 lag_hess_prototype = zeros (Bool, num_cons, length (x))
206212
207213 function lag_h! (H:: AbstractMatrix , θ, σ, λ)
@@ -294,7 +300,8 @@ function OptimizationBase.instantiate_function(
294300 adtype, soadtype = OptimizationBase. generate_sparse_adtype (adtype)
295301
296302 if g == true && f. grad === nothing
297- extras_grad = prepare_gradient (f. f, adtype. dense_ad, x, Constant (p), strict= Val (false ))
303+ extras_grad = prepare_gradient (
304+ f. f, adtype. dense_ad, x, Constant (p), strict = Val (false ))
298305 function grad (res, θ)
299306 gradient! (f. f, res, extras_grad, adtype. dense_ad, θ, Constant (p))
300307 end
@@ -311,16 +318,19 @@ function OptimizationBase.instantiate_function(
311318
312319 if fg == true && f. fg === nothing
313320 if g == false
314- extras_grad = prepare_gradient (f. f, adtype. dense_ad, x, Constant (p), strict= Val (false ))
321+ extras_grad = prepare_gradient (
322+ f. f, adtype. dense_ad, x, Constant (p), strict = Val (false ))
315323 end
316324 function fg! (res, θ)
317- (y, _) = value_and_gradient! (
325+ (y,
326+ _) = value_and_gradient! (
318327 f. f, res, extras_grad, adtype. dense_ad, θ, Constant (p))
319328 return y
320329 end
321330 if p != = SciMLBase. NullParameters () && p != = nothing
322331 function fg! (res, θ, p)
323- (y, _) = value_and_gradient! (
332+ (y,
333+ _) = value_and_gradient! (
324334 f. f, res, extras_grad, adtype. dense_ad, θ, Constant (p))
325335 return y
326336 end
@@ -334,7 +344,7 @@ function OptimizationBase.instantiate_function(
334344 hess_sparsity = f. hess_prototype
335345 hess_colors = f. hess_colorvec
336346 if h == true && f. hess === nothing
337- prep_hess = prepare_hessian (f. f, soadtype, x, Constant (p), strict= Val (false ))
347+ prep_hess = prepare_hessian (f. f, soadtype, x, Constant (p), strict = Val (false ))
338348 function hess (res, θ)
339349 hessian! (f. f, res, prep_hess, soadtype, θ, Constant (p))
340350 end
@@ -354,14 +364,18 @@ function OptimizationBase.instantiate_function(
354364
355365 if fgh == true && f. fgh === nothing
356366 function fgh! (G, H, θ)
357- (y, _, _) = value_derivative_and_second_derivative! (
367+ (y,
368+ _,
369+ _) = value_derivative_and_second_derivative! (
358370 f. f, G, H, θ, prep_hess, soadtype, Constant (p))
359371 return y
360372 end
361373
362374 if p != = SciMLBase. NullParameters () && p != = nothing
363375 function fgh! (G, H, θ, p)
364- (y, _, _) = value_derivative_and_second_derivative! (
376+ (y,
377+ _,
378+ _) = value_derivative_and_second_derivative! (
365379 f. f, G, H, θ, prep_hess, soadtype, Constant (p))
366380 return y
367381 end
@@ -458,7 +472,8 @@ function OptimizationBase.instantiate_function(
458472 conshess_sparsity = f. cons_hess_prototype
459473 conshess_colors = f. cons_hess_colorvec
460474 if cons != = nothing && f. cons_h === nothing && cons_h == true
461- prep_cons_hess = [prepare_hessian (cons_oop, soadtype, x, Constant (i), strict= Val (false ))
475+ prep_cons_hess = [prepare_hessian (
476+ cons_oop, soadtype, x, Constant (i), strict = Val (false ))
462477 for i in 1 : num_cons]
463478 colores = getfield .(prep_cons_hess, :coloring_result )
464479 conshess_sparsity = getfield .(colores, :A )
@@ -479,7 +494,7 @@ function OptimizationBase.instantiate_function(
479494 if cons != = nothing && f. lag_h === nothing && lag_h == true
480495 lag_extras = prepare_hessian (
481496 lagrangian, soadtype, x, Constant (one (eltype (x))),
482- Constant (ones (eltype (x), num_cons)), Constant (p), strict= Val (false ))
497+ Constant (ones (eltype (x), num_cons)), Constant (p), strict = Val (false ))
483498 lag_hess_prototype = lag_extras. coloring_result. A
484499 lag_hess_colors = lag_extras. coloring_result. color
485500
0 commit comments