@@ -50,17 +50,17 @@ julia> train_data = rand(Float32, 10, 100) # 10 features, 100 time steps
5050 0.4463 0.334423 0.444679 0.311695 0.0494497 0.27171 0.214925
5151 0.987182 0.898593 0.295241 0.233098 0.789699 0.453692 0.759205
5252
53- julia> esn = ESN(train_data, 10, 300; washout= 10)
53+ julia> esn = ESN(train_data, 10, 300; washout = 10)
5454ESN(10 => 300)
5555```
5656"""
5757function ESN (train_data:: AbstractArray , in_size:: Int , res_size:: Int ;
58- input_layer= scaled_rand, reservoir= rand_sparse, bias= zeros32,
59- reservoir_driver:: AbstractDriver = RNN (),
60- nla_type:: NonLinearAlgorithm = NLADefault (),
61- states_type:: AbstractStates = StandardStates (),
62- washout:: Int = 0 , rng:: AbstractRNG = Utils. default_rng (),
63- matrix_type= typeof (train_data))
58+ input_layer = scaled_rand, reservoir = rand_sparse, bias = zeros32,
59+ reservoir_driver:: AbstractDriver = RNN (),
60+ nla_type:: NonLinearAlgorithm = NLADefault (),
61+ states_type:: AbstractStates = StandardStates (),
62+ washout:: Int = 0 , rng:: AbstractRNG = Utils. default_rng (),
63+ matrix_type = typeof (train_data))
6464 if states_type isa AbstractPaddedStates
6565 in_size = size (train_data, 1 ) + 1
6666 train_data = vcat (adapt (matrix_type, ones (1 , size (train_data, 2 ))),
@@ -82,7 +82,7 @@ function ESN(train_data::AbstractArray, in_size::Int, res_size::Int;
8282end
8383
8484function (esn:: AbstractEchoStateNetwork )(prediction:: AbstractPrediction ,
85- output_layer:: AbstractOutputLayer ; last_state= esn. states[:, [end ]],
85+ output_layer:: AbstractOutputLayer ; last_state = esn. states[:, [end ]],
8686 kwargs... )
8787 return obtain_esn_prediction (esn, prediction, last_state, output_layer;
8888 kwargs... )
@@ -120,15 +120,15 @@ julia> train_data = rand(Float32, 10, 100) # 10 features, 100 time steps
120120 0.133498 0.451058 0.0761995 0.90421 0.994212 0.332164 0.545112
121121 0.214467 0.791524 0.124105 0.951805 0.947166 0.954244 0.889733
122122
123- julia> esn = ESN(train_data, 10, 300; washout= 10)
123+ julia> esn = ESN(train_data, 10, 300; washout = 10)
124124ESN(10 => 300)
125125
126126julia> output_layer = train(esn, rand(Float32, 3, 90))
127127OutputLayer successfully trained with output size: 3
128128```
129129"""
130130function train (esn:: AbstractEchoStateNetwork , target_data:: AbstractArray ,
131- training_method= StandardRidge (); kwargs... )
131+ training_method = StandardRidge (); kwargs... )
132132 states_new = esn. states_type (esn. nla_type, esn. states, esn. train_data[:, 1 : end ])
133133 return train (training_method, states_new, target_data; kwargs... )
134134end
0 commit comments