@@ -30,9 +30,9 @@ function create_states(reservoir_driver::AbstractReservoirDriver,
3030 train_len = size (train_data, 2 ) - washout
3131 res_size = size (reservoir_matrix, 1 )
3232
33- states = Adapt . adapt (typeof (train_data), zeros (res_size, train_len))
33+ states = adapt (typeof (train_data), zeros (res_size, train_len))
3434 tmp_array = allocate_tmp (reservoir_driver, typeof (train_data), res_size)
35- _state = Adapt . adapt (typeof (train_data), zeros (res_size, 1 ))
35+ _state = adapt (typeof (train_data), zeros (res_size, 1 ))
3636
3737 for i in 1 : washout
3838 yv = @view train_data[:, i]
@@ -59,9 +59,9 @@ function create_states(reservoir_driver::AbstractReservoirDriver,
5959 train_len = size (train_data, 2 ) - washout
6060 res_size = sum ([size (reservoir_matrix[i], 1 ) for i in 1 : length (reservoir_matrix)])
6161
62- states = Adapt . adapt (typeof (train_data), zeros (res_size, train_len))
62+ states = adapt (typeof (train_data), zeros (res_size, train_len))
6363 tmp_array = allocate_tmp (reservoir_driver, typeof (train_data), res_size)
64- _state = Adapt . adapt (typeof (train_data), zeros (res_size))
64+ _state = adapt (typeof (train_data), zeros (res_size))
6565
6666 for i in 1 : washout
6767 for j in 1 : length (reservoir_matrix)
@@ -108,7 +108,7 @@ echo state networks (`ESN`).
108108 - `leaky_coefficient`: The leaky coefficient used in the RNN.
109109 Defaults to 1.0.
110110"""
111- function RNN (; activation_function= NNlib . fast_act (tanh), leaky_coefficient= 1.0 )
111+ function RNN (; activation_function= fast_act (tanh), leaky_coefficient= 1.0 )
112112 RNN (activation_function, leaky_coefficient)
113113end
114114
@@ -142,7 +142,7 @@ function next_state!(out, rnn::RNN, x, y, W::Vector, W_in, b, tmp_array)
142142end
143143
144144function allocate_tmp (:: RNN , tmp_type, res_size)
145- return [Adapt . adapt (tmp_type, zeros (res_size, 1 )) for i in 1 : 2 ]
145+ return [adapt (tmp_type, zeros (res_size, 1 )) for i in 1 : 2 ]
146146end
147147
148148# multiple RNN driver
@@ -210,7 +210,7 @@ function next_state!(out, mrnn::MRNN, x, y, W, W_in, b, tmp_array)
210210end
211211
212212function allocate_tmp (:: MRNN , tmp_type, res_size)
213- return [Adapt . adapt (tmp_type, zeros (res_size, 1 )) for i in 1 : 2 ]
213+ return [adapt (tmp_type, zeros (res_size, 1 )) for i in 1 : 2 ]
214214end
215215
216216abstract type AbstractGRUVariant end
@@ -280,7 +280,7 @@ This driver is based on the GRU architecture [^Cho2014].
280280 "_Learning phrase representations using RNN encoder-decoder for statistical machine translation._"
281281 arXiv preprint arXiv:1406.1078 (2014).
282282"""
283- function GRU (; activation_function= [NNlib . sigmoid, NNlib . sigmoid, tanh],
283+ function GRU (; activation_function= [sigmoid, sigmoid, tanh],
284284 inner_layer= fill (scaled_rand, 2 ),
285285 reservoir= fill (rand_sparse, 2 ),
286286 bias= fill (scaled_rand, 2 ),
@@ -344,7 +344,7 @@ function next_state!(out, gru::GRUParams, x, y, W, W_in, b, tmp_array)
344344end
345345
346346function allocate_tmp (:: GRUParams , tmp_type, res_size)
347- return [Adapt . adapt (tmp_type, zeros (res_size, 1 )) for i in 1 : 9 ]
347+ return [adapt (tmp_type, zeros (res_size, 1 )) for i in 1 : 9 ]
348348end
349349
350350# W=U, W_in=W in papers. x=h, and y=x. I know, it's confusing. ( on the left our notation)
0 commit comments