Skip to content

Commit a899426

Browse files
fixed and uniformed citations
1 parent 008d630 commit a899426

File tree

1 file changed

+17
-18
lines changed

1 file changed

+17
-18
lines changed

src/esn/esn_inits.jl

Lines changed: 17 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@ end
8080
8181
Create and return a matrix representing a weighted input layer.
8282
This initializer generates a weighted input matrix with random non-zero
83-
elements distributed uniformly within the range [-`scaling`, `scaling`] [^Lu2017].
83+
elements distributed uniformly within the range [-`scaling`, `scaling`] [^lu2017].
8484
8585
# Arguments
8686
@@ -110,7 +110,7 @@ julia> res_input = weighted_init(8, 3)
110110
0.0 0.0 -0.0562827
111111
```
112112
113-
[^Lu2017]: Lu, Zhixin, et al.
113+
[^lu2017]: Lu, Zhixin, et al.
114114
"Reservoir observers: Model-free inference of unmeasured variables in
115115
chaotic systems."
116116
Chaos: An Interdisciplinary Journal of Nonlinear Science 27.4 (2017): 041102.
@@ -136,7 +136,7 @@ end
136136
informed_init([rng], [T], dims...;
137137
scaling=0.1, model_in_size, gamma=0.5)
138138
139-
Create an input layer for informed echo state networks [^Pathak2018].
139+
Create an input layer for informed echo state networks [^pathak2018].
140140
141141
# Arguments
142142
@@ -155,7 +155,7 @@ Create an input layer for informed echo state networks [^Pathak2018].
155155
156156
# Examples
157157
158-
[^Pathak2018]: Pathak, Jaideep, et al. "Hybrid forecasting of chaotic processes:
158+
[^pathak2018]: Pathak, Jaideep, et al. "Hybrid forecasting of chaotic processes:
159159
Using machine learning in conjunction with a knowledge-based model."
160160
Chaos: An Interdisciplinary Journal of Nonlinear Science 28.4 (2018).
161161
"""
@@ -199,7 +199,7 @@ end
199199
minimal_init([rng], [T], dims...;
200200
sampling_type=:bernoulli, weight=0.1, irrational=pi, start=1, p=0.5)
201201
202-
Create a layer matrix with uniform weights determined by `weight` [^Rodan2010].
202+
Create a layer matrix with uniform weights determined by `weight` [^rodan2010].
203203
The sign difference is randomly determined by the `sampling` chosen.
204204
205205
# Arguments
@@ -269,7 +269,7 @@ julia> res_input = minimal_init(8, 3; p=0.8)# higher p -> more positive signs
269269
0.1 0.1 0.1
270270
```
271271
272-
[^Rodan2010]: Rodan, Ali, and Peter Tino.
272+
[^rodan2010]: Rodan, Ali, and Peter Tino.
273273
"Minimum complexity echo state network."
274274
IEEE transactions on neural networks 22.1 (2010): 131-144.
275275
"""
@@ -646,7 +646,7 @@ end
646646
delay_line([rng], [T], dims...;
647647
weight=0.1, return_sparse=false)
648648
649-
Create and return a delay line reservoir matrix [^Rodan2010].
649+
Create and return a delay line reservoir matrix [^rodan2010].
650650
651651
# Arguments
652652
@@ -683,7 +683,7 @@ julia> res_matrix = delay_line(5, 5; weight=1)
683683
0.0 0.0 0.0 1.0 0.0
684684
```
685685
686-
[^Rodan2010]: Rodan, Ali, and Peter Tino.
686+
[^rodan2010]: Rodan, Ali, and Peter Tino.
687687
"Minimum complexity echo state network."
688688
IEEE transactions on neural networks 22.1 (2010): 131-144.
689689
"""
@@ -708,7 +708,7 @@ end
708708
weight=0.1, fb_weight=0.2, return_sparse=false)
709709
710710
Create a delay line backward reservoir with the specified by `dims` and weights.
711-
Creates a matrix with backward connections as described in [^Rodan2010].
711+
Creates a matrix with backward connections as described in [^rodan2010].
712712
713713
# Arguments
714714
@@ -747,7 +747,7 @@ julia> res_matrix = delay_line_backward(Float16, 5, 5)
747747
0.0 0.0 0.0 0.1 0.0
748748
```
749749
750-
[^Rodan2010]: Rodan, Ali, and Peter Tino.
750+
[^rodan2010]: Rodan, Ali, and Peter Tino.
751751
"Minimum complexity echo state network."
752752
IEEE transactions on neural networks 22.1 (2010): 131-144.
753753
"""
@@ -766,8 +766,7 @@ end
766766
cycle_jumps([rng], [T], dims...;
767767
cycle_weight=0.1, jump_weight=0.1, jump_size=3, return_sparse=false)
768768
769-
Create a cycle jumps reservoir with the specified dimensions,
770-
cycle weight, jump weight, and jump size.
769+
Create a cycle jumps reservoir [^Rodan2012].
771770
772771
# Arguments
773772
@@ -808,7 +807,7 @@ julia> res_matrix = cycle_jumps(5, 5; jump_size=2)
808807
0.0 0.0 0.1 0.1 0.0
809808
```
810809
811-
[^Rodan2012]: Rodan, Ali, and Peter Tiňo.
810+
[^rodan2012]: Rodan, Ali, and Peter Tiňo.
812811
"Simple deterministically constructed cycle reservoirs with regular jumps."
813812
Neural computation 24.7 (2012): 1822-1852.
814813
"""
@@ -841,7 +840,7 @@ end
841840
simple_cycle([rng], [T], dims...;
842841
weight=0.1, return_sparse=false)
843842
844-
Create a simple cycle reservoir with the specified dimensions and weight.
843+
Create a simple cycle reservoir [^rodan2010].
845844
846845
# Arguments
847846
@@ -877,7 +876,7 @@ julia> res_matrix = simple_cycle(5, 5; weight=11)
877876
0.0 0.0 0.0 11.0 0.0
878877
```
879878
880-
[^Rodan2010]: Rodan, Ali, and Peter Tino.
879+
[^rodan2010]: Rodan, Ali, and Peter Tino.
881880
"Minimum complexity echo state network."
882881
IEEE transactions on neural networks 22.1 (2010): 131-144.
883882
"""
@@ -900,7 +899,7 @@ end
900899
return_sparse=false)
901900
902901
Returns an initializer to build a sparse reservoir matrix with the given
903-
`sparsity` by using a pseudo-SVD approach as described in [^yang].
902+
`sparsity` by using a pseudo-SVD approach as described in [^yang2018].
904903
905904
# Arguments
906905
@@ -938,7 +937,7 @@ julia> res_matrix = pseudo_svd(5, 5)
938937
0.0 0.0 0.0 0.0 1.0
939938
```
940939
941-
[^yang]: Yang, Cuili, et al.
940+
[^yang2018]: Yang, Cuili, et al.
942941
"_Design of polynomial echo state networks for time series prediction._"
943942
Neurocomputing 290 (2018): 148-160.
944943
"""
@@ -1230,7 +1229,7 @@ end
12301229
cycle_weight=0.1, second_cycle_weight=0.1,
12311230
return_sparse=false)
12321231
1233-
Creates a double cycle reservoir[^fu2023] with the specified dimensions and weights.
1232+
Creates a double cycle reservoir [^fu2023].
12341233
12351234
# Arguments
12361235

0 commit comments

Comments
 (0)