8080
8181Create and return a matrix representing a weighted input layer.
8282This initializer generates a weighted input matrix with random non-zero
83- elements distributed uniformly within the range [-`scaling`, `scaling`] [^Lu2017 ].
83+ elements distributed uniformly within the range [-`scaling`, `scaling`] [^lu2017 ].
8484
8585# Arguments
8686
@@ -110,7 +110,7 @@ julia> res_input = weighted_init(8, 3)
110110 0.0 0.0 -0.0562827
111111```
112112
113- [^Lu2017 ]: Lu, Zhixin, et al.
113+ [^lu2017 ]: Lu, Zhixin, et al.
114114 "Reservoir observers: Model-free inference of unmeasured variables in
115115 chaotic systems."
116116 Chaos: An Interdisciplinary Journal of Nonlinear Science 27.4 (2017): 041102.
136136 informed_init([rng], [T], dims...;
137137 scaling=0.1, model_in_size, gamma=0.5)
138138
139- Create an input layer for informed echo state networks [^Pathak2018 ].
139+ Create an input layer for informed echo state networks [^pathak2018 ].
140140
141141# Arguments
142142
@@ -155,7 +155,7 @@ Create an input layer for informed echo state networks [^Pathak2018].
155155
156156# Examples
157157
158- [^Pathak2018 ]: Pathak, Jaideep, et al. "Hybrid forecasting of chaotic processes:
158+ [^pathak2018 ]: Pathak, Jaideep, et al. "Hybrid forecasting of chaotic processes:
159159 Using machine learning in conjunction with a knowledge-based model."
160160 Chaos: An Interdisciplinary Journal of Nonlinear Science 28.4 (2018).
161161"""
199199 minimal_init([rng], [T], dims...;
200200 sampling_type=:bernoulli, weight=0.1, irrational=pi, start=1, p=0.5)
201201
202- Create a layer matrix with uniform weights determined by `weight` [^Rodan2010 ].
202+ Create a layer matrix with uniform weights determined by `weight` [^rodan2010 ].
203203The sign difference is randomly determined by the `sampling` chosen.
204204
205205# Arguments
@@ -269,7 +269,7 @@ julia> res_input = minimal_init(8, 3; p=0.8)# higher p -> more positive signs
269269 0.1 0.1 0.1
270270```
271271
272- [^Rodan2010 ]: Rodan, Ali, and Peter Tino.
272+ [^rodan2010 ]: Rodan, Ali, and Peter Tino.
273273 "Minimum complexity echo state network."
274274 IEEE transactions on neural networks 22.1 (2010): 131-144.
275275"""
646646 delay_line([rng], [T], dims...;
647647 weight=0.1, return_sparse=false)
648648
649- Create and return a delay line reservoir matrix [^Rodan2010 ].
649+ Create and return a delay line reservoir matrix [^rodan2010 ].
650650
651651# Arguments
652652
@@ -683,7 +683,7 @@ julia> res_matrix = delay_line(5, 5; weight=1)
683683 0.0 0.0 0.0 1.0 0.0
684684```
685685
686- [^Rodan2010 ]: Rodan, Ali, and Peter Tino.
686+ [^rodan2010 ]: Rodan, Ali, and Peter Tino.
687687 "Minimum complexity echo state network."
688688 IEEE transactions on neural networks 22.1 (2010): 131-144.
689689"""
708708 weight=0.1, fb_weight=0.2, return_sparse=false)
709709
710710Create a delay line backward reservoir with the specified by `dims` and weights.
711- Creates a matrix with backward connections as described in [^Rodan2010 ].
711+ Creates a matrix with backward connections as described in [^rodan2010 ].
712712
713713# Arguments
714714
@@ -747,7 +747,7 @@ julia> res_matrix = delay_line_backward(Float16, 5, 5)
747747 0.0 0.0 0.0 0.1 0.0
748748```
749749
750- [^Rodan2010 ]: Rodan, Ali, and Peter Tino.
750+ [^rodan2010 ]: Rodan, Ali, and Peter Tino.
751751 "Minimum complexity echo state network."
752752 IEEE transactions on neural networks 22.1 (2010): 131-144.
753753"""
766766 cycle_jumps([rng], [T], dims...;
767767 cycle_weight=0.1, jump_weight=0.1, jump_size=3, return_sparse=false)
768768
769- Create a cycle jumps reservoir with the specified dimensions,
770- cycle weight, jump weight, and jump size.
769+ Create a cycle jumps reservoir [^Rodan2012].
771770
772771# Arguments
773772
@@ -808,7 +807,7 @@ julia> res_matrix = cycle_jumps(5, 5; jump_size=2)
808807 0.0 0.0 0.1 0.1 0.0
809808```
810809
811- [^Rodan2012 ]: Rodan, Ali, and Peter Tiňo.
810+ [^rodan2012 ]: Rodan, Ali, and Peter Tiňo.
812811 "Simple deterministically constructed cycle reservoirs with regular jumps."
813812 Neural computation 24.7 (2012): 1822-1852.
814813"""
841840 simple_cycle([rng], [T], dims...;
842841 weight=0.1, return_sparse=false)
843842
844- Create a simple cycle reservoir with the specified dimensions and weight .
843+ Create a simple cycle reservoir [^rodan2010] .
845844
846845# Arguments
847846
@@ -877,7 +876,7 @@ julia> res_matrix = simple_cycle(5, 5; weight=11)
877876 0.0 0.0 0.0 11.0 0.0
878877```
879878
880- [^Rodan2010 ]: Rodan, Ali, and Peter Tino.
879+ [^rodan2010 ]: Rodan, Ali, and Peter Tino.
881880 "Minimum complexity echo state network."
882881 IEEE transactions on neural networks 22.1 (2010): 131-144.
883882"""
900899 return_sparse=false)
901900
902901Returns an initializer to build a sparse reservoir matrix with the given
903- `sparsity` by using a pseudo-SVD approach as described in [^yang ].
902+ `sparsity` by using a pseudo-SVD approach as described in [^yang2018 ].
904903
905904# Arguments
906905
@@ -938,7 +937,7 @@ julia> res_matrix = pseudo_svd(5, 5)
938937 0.0 0.0 0.0 0.0 1.0
939938```
940939
941- [^yang ]: Yang, Cuili, et al.
940+ [^yang2018 ]: Yang, Cuili, et al.
942941 "_Design of polynomial echo state networks for time series prediction._"
943942 Neurocomputing 290 (2018): 148-160.
944943"""
@@ -1230,7 +1229,7 @@ end
12301229 cycle_weight=0.1, second_cycle_weight=0.1,
12311230 return_sparse=false)
12321231
1233- Creates a double cycle reservoir[^fu2023] with the specified dimensions and weights .
1232+ Creates a double cycle reservoir [^fu2023].
12341233
12351234# Arguments
12361235
0 commit comments