@@ -15,46 +15,6 @@ The equations for ridge regression are as follows:
1515 there's usually no need to tweak this
1616 - `reg`: regularization coefficient. Default is set to 0.0 (linear regression).
1717
18- # Examples
19- ```jldoctest
20- julia> ridge_reg = StandardRidge()
21- StandardRidge(0.0)
22-
23- julia> ol = train(ridge_reg, rand(Float32, 10, 10), rand(Float32, 10, 10))
24- OutputLayer successfully trained with output size: 10
25-
26- julia> ol.output_matrix #visualize output matrix
27- 10×10 Matrix{Float32}:
28- 0.456574 -0.0407612 0.121963 … 0.859327 -0.127494 0.0572494
29- 0.133216 -0.0337922 0.0185378 0.24077 0.0297829 0.31512
30- 0.379672 -1.24541 -0.444314 1.02269 -0.0446086 0.482282
31- 1.18455 -0.517971 -0.133498 0.84473 0.31575 0.205857
32- -0.119345 0.563294 0.747992 0.0102919 1.509 -0.328005
33- -0.0716812 0.0976365 0.628654 … -0.516041 2.4309 -0.113402
34- 0.0153872 -0.52334 0.0526867 0.729326 2.98958 1.32703
35- 0.154027 0.6013 1.05548 -0.0840203 0.991182 -0.328555
36- 1.11007 -0.0371736 -0.0529418 0.186796 -1.21815 0.204838
37- 0.282996 -0.263799 0.132079 0.875417 0.497951 0.273423
38-
39- julia> ridge_reg = StandardRidge(0.001) #passing a value
40- StandardRidge(0.001)
41-
42- julia> ol = train(ridge_reg, rand(Float16, 10, 10), rand(Float16, 10, 10))
43- OutputLayer successfully trained with output size: 10
44-
45- julia> ol.output_matrix
46- 10×10 Matrix{Float16}:
47- -1.251 3.074 -1.566 -0.10297 … 0.3823 1.341 -1.77 -0.445
48- 0.11017 -2.027 0.8975 0.872 -0.643 0.02615 1.083 0.615
49- 0.2634 3.514 -1.168 -1.532 1.486 0.1255 -1.795 -0.06555
50- 0.964 0.9463 -0.006855 -0.519 0.0743 -0.181 -0.433 0.06793
51- -0.389 1.887 -0.702 -0.8906 0.221 1.303 -1.318 0.2634
52- -0.1337 -0.4453 -0.06866 0.557 … -0.322 0.247 0.2554 0.5933
53- -0.6724 0.906 -0.547 0.697 -0.2664 0.809 -0.6836 0.2358
54- 0.8843 -3.664 1.615 1.417 -0.6094 -0.59 1.975 0.4785
55- 1.266 -0.933 0.0664 -0.4497 -0.0759 -0.03897 1.117 0.3152
56- 0.6353 1.327 -0.6978 -1.053 0.8037 0.6577 -0.7246 0.07336
57-
5818```
5919"""
6020struct StandardRidge
@@ -84,8 +44,7 @@ function train(sr::StandardRidge, states::AbstractArray, target_data::AbstractAr
8444 ))
8545 end
8646
87- T = eltype (states)
88- output_layer = Matrix (((states * states' + T (sr. reg) * I) \
47+ output_layer = Matrix (((states * states' + sr. reg * I) \
8948 (states * target_data' ))' )
9049 return OutputLayer (sr, output_layer, size (target_data, 1 ), target_data[:, end ])
9150end
0 commit comments