@@ -13,6 +13,9 @@ a range defined by `scaling`.
1313 - `T`: Type of the elements in the reservoir matrix.
1414 Default is `Float32`.
1515 - `dims`: Dimensions of the matrix. Should follow `res_size x in_size`.
16+
17+ # Keyword arguments
18+
1619 - `scaling`: A scaling factor to define the range of the uniform distribution.
1720 The matrix elements will be randomly chosen from the
1821 range `[-scaling, scaling]`. Defaults to `0.1`.
@@ -55,6 +58,9 @@ elements distributed uniformly within the range [-`scaling`, `scaling`] [^Lu2017
5558 - `T`: Type of the elements in the reservoir matrix.
5659 Default is `Float32`.
5760 - `dims`: Dimensions of the matrix. Should follow `res_size x in_size`.
61+
62+ # Keyword arguments
63+
5864 - `scaling`: The scaling factor for the weight distribution.
5965 Defaults to `0.1`.
6066 - `return_sparse`: flag for returning a `sparse` matrix.
@@ -106,6 +112,9 @@ Create an input layer for informed echo state networks [^Pathak2018].
106112 - `T`: Type of the elements in the reservoir matrix.
107113 Default is `Float32`.
108114 - `dims`: Dimensions of the matrix. Should follow `res_size x in_size`.
115+
116+ # Keyword arguments
117+
109118 - `scaling`: The scaling factor for the input matrix.
110119 Default is 0.1.
111120 - `model_in_size`: The size of the input model.
@@ -167,6 +176,9 @@ is randomly determined by the `sampling` chosen.
167176 - `T`: Type of the elements in the reservoir matrix.
168177 Default is `Float32`.
169178 - `dims`: Dimensions of the matrix. Should follow `res_size x in_size`.
179+
180+ # Keyword arguments
181+
170182 - `weight`: The weight used to fill the layer matrix. Default is 0.1.
171183 - `sampling_type`: The sampling parameters used to generate the input matrix.
172184 Default is `:bernoulli`.
@@ -282,7 +294,7 @@ function _create_irrational(irrational::Irrational, start::Int, res_size::Int,
282294 return T .(input_matrix)
283295end
284296
285- """
297+ @doc raw """
286298 chebyshev_mapping([rng], [T], dims...;
287299 amplitude=one(T), sine_divisor=one(T),
288300 chebyshev_parameter=one(T), return_sparse=true)
@@ -292,14 +304,15 @@ using a sine function and subsequent rows are iteratively generated
292304via the Chebyshev mapping. The first row is defined as:
293305
294306```math
295- w(1, j) = amplitude * sin(j * π / (sine_divisor * n_cols))
307+ W[1, j] = \t ext{amplitude} \c dot \s in(j \c dot \p i / (\t ext{sine_divisor}
308+ \c dot \t ext{n_cols}))
296309```
297310
298311for j = 1, 2, …, n_cols (with n_cols typically equal to K+1, where K is the number of input layer neurons).
299312Subsequent rows are generated by applying the mapping:
300313
301314```math
302- w( i+1, j) = cos(chebyshev_parameter * acos(w(i , j) ))
315+ W[ i+1, j] = \ c os( \t ext{ chebyshev_parameter} \c dot \ a cos(W[pi , j] ))
303316```
304317
305318# Arguments
@@ -364,22 +377,23 @@ function chebyshev_mapping(rng::AbstractRNG, ::Type{T}, dims::Integer...;
364377end
365378
366379@doc raw """
367- logistic_mapping(rng::AbstractRNG, ::Type{T} , dims::Integer ...;
368- amplitude=0.3, sine_divisor=5.9, logistic_parameter = 3.7,
380+ logistic_mapping([ rng], [T] , dims...;
381+ amplitude=0.3, sine_divisor=5.9, logistic_parameter= 3.7,
369382 return_sparse=true)
370383
371384Generate an input weight matrix using a logistic mapping [^wang2022].The first
372385row is initialized using a sine function:
373386
374387```math
375- W(1, j) = amplitude * sin(j * π / (sine_divisor * in_size))
388+ W[1, j] = \t ext{amplitude} \c dot \s in(j \c dot \p i /
389+ (\t ext{sine_divisor} \c dot in_size))
376390```
377391
378392for each input index `j`, with `in_size` being the number of columns provided in `dims`. Subsequent rows
379393are generated recursively using the logistic map recurrence:
380394
381395```math
382- W( i+1, j) = logistic_parameter * W(i, j) * (1 - W( i, j) )
396+ W[ i+1, j] = \t ext{ logistic_parameter} \c dot W(i, j) \c dot (1 - W[ i, j] )
383397```
384398
385399# Arguments
@@ -389,7 +403,8 @@ are generated recursively using the logistic map recurrence:
389403 Default is `Float32`.
390404 - `dims`: Dimensions of the matrix. Should follow `res_size x in_size`.
391405
392- # keyword arguments
406+ # Keyword arguments
407+
393408 - `amplitude`: Scaling parameter used in the sine initialization of the
394409 first row. Default is 0.3.
395410 - `sine_divisor`: Parameter used to adjust the phase in the sine initialization.
@@ -452,14 +467,15 @@ as follows:
452467- The first element of the chain is initialized using a sine function:
453468
454469```math
455- W(1,j) = amplitude * sin( (j * π) / (factor * n * sine_divisor) )
470+ W[1,j] = \t ext{amplitude} \c dot \s in( (j \c dot \p i) /
471+ (\t ext{factor} \c dot \t ext{n} \c dot \t ext{sine_divisor}) )
456472```
457473 where `j` is the index corresponding to the input and `n` is the number of inputs.
458474
459475- Subsequent elements are recursively computed using the logistic mapping:
460476
461477```math
462- W( i+1,j) = logistic_parameter * W( i,j) * (1 - W( i,j) )
478+ W[ i+1,j] = \t ext{ logistic_parameter} \c dot W[ i,j] \c dot (1 - W[ i,j] )
463479```
464480
465481The resulting matrix has dimensions `(factor * in_size) x in_size`, where
@@ -474,7 +490,8 @@ the number of rows is overridden.
474490 Default is `Float32`.
475491 - `dims`: Dimensions of the matrix. Should follow `res_size x in_size`.
476492
477- # keyword arguments
493+ # Keyword arguments
494+
478495 - `factor`: The number of logistic map iterations (chain length) per input,
479496 determining the number of rows per input.
480497 - `amplitude`: Scaling parameter A for the sine-based initialization of
@@ -563,6 +580,8 @@ and scaled spectral radius according to `radius`.
563580 - `T`: Type of the elements in the reservoir matrix.
564581 Default is `Float32`.
565582 - `dims`: Dimensions of the reservoir matrix.
583+ # Keyword arguments
584+
566585 - `radius`: The desired spectral radius of the reservoir.
567586 Defaults to 1.0.
568587 - `sparsity`: The sparsity level of the reservoir matrix,
@@ -609,6 +628,9 @@ Create and return a delay line reservoir matrix [^Rodan2010].
609628 - `T`: Type of the elements in the reservoir matrix.
610629 Default is `Float32`.
611630 - `dims`: Dimensions of the reservoir matrix.
631+
632+ # Keyword arguments
633+
612634 - `weight`: Determines the value of all connections in the reservoir.
613635 Default is 0.1.
614636 - `return_sparse`: flag for returning a `sparse` matrix.
652674
653675"""
654676 delay_line_backward([rng], [T], dims...;
655- weight = 0.1, fb_weight = 0.2, return_sparse=true)
677+ weight= 0.1, fb_weight= 0.2, return_sparse=true)
656678
657679Create a delay line backward reservoir with the specified by `dims` and weights.
658680Creates a matrix with backward connections as described in [^Rodan2010].
@@ -664,6 +686,9 @@ Creates a matrix with backward connections as described in [^Rodan2010].
664686 - `T`: Type of the elements in the reservoir matrix.
665687 Default is `Float32`.
666688 - `dims`: Dimensions of the reservoir matrix.
689+
690+ # Keyword arguments
691+
667692 - `weight`: The weight determines the absolute value of
668693 forward connections in the reservoir. Default is 0.1
669694 - `fb_weight`: Determines the absolute value of backward connections
709734
710735"""
711736 cycle_jumps([rng], [T], dims...;
712- cycle_weight = 0.1, jump_weight = 0.1, jump_size = 3, return_sparse=true)
737+ cycle_weight= 0.1, jump_weight= 0.1, jump_size= 3, return_sparse=true)
713738
714739Create a cycle jumps reservoir with the specified dimensions,
715740cycle weight, jump weight, and jump size.
@@ -721,6 +746,9 @@ cycle weight, jump weight, and jump size.
721746 - `T`: Type of the elements in the reservoir matrix.
722747 Default is `Float32`.
723748 - `dims`: Dimensions of the reservoir matrix.
749+
750+ # Keyword arguments
751+
724752 - `cycle_weight`: The weight of cycle connections.
725753 Default is 0.1.
726754 - `jump_weight`: The weight of jump connections.
779807
780808"""
781809 simple_cycle([rng], [T], dims...;
782- weight = 0.1, return_sparse=true)
810+ weight= 0.1, return_sparse=true)
783811
784812Create a simple cycle reservoir with the specified dimensions and weight.
785813
@@ -789,6 +817,9 @@ Create a simple cycle reservoir with the specified dimensions and weight.
789817 from WeightInitializers.
790818 - `T`: Type of the elements in the reservoir matrix. Default is `Float32`.
791819 - `dims`: Dimensions of the reservoir matrix.
820+
821+ # Keyword arguments
822+
792823 - `weight`: Weight of the connections in the reservoir matrix.
793824 Default is 0.1.
794825 - `return_sparse`: flag for returning a `sparse` matrix.
831862
832863"""
833864 pseudo_svd([rng], [T], dims...;
834- max_value=1.0, sparsity=0.1, sorted = true, reverse_sort = false,
865+ max_value=1.0, sparsity=0.1, sorted= true, reverse_sort= false,
835866 return_sparse=true)
836867
837868Returns an initializer to build a sparse reservoir matrix with the given
@@ -844,6 +875,9 @@ Returns an initializer to build a sparse reservoir matrix with the given
844875 - `T`: Type of the elements in the reservoir matrix.
845876 Default is `Float32`.
846877 - `dims`: Dimensions of the reservoir matrix.
878+
879+ # Keyword arguments
880+
847881 - `max_value`: The maximum absolute value of elements in the matrix.
848882 Default is 1.0
849883 - `sparsity`: The desired sparsity level of the reservoir matrix.
0 commit comments