diff --git a/.JuliaFormatter.toml b/.JuliaFormatter.toml old mode 100644 new mode 100755 diff --git a/.buildkite/documentation.yml b/.buildkite/documentation.yml old mode 100644 new mode 100755 diff --git a/.buildkite/pipeline.yml b/.buildkite/pipeline.yml old mode 100644 new mode 100755 diff --git a/.github/dependabot.yml b/.github/dependabot.yml old mode 100644 new mode 100755 diff --git a/.github/workflows/CompatHelper.yml b/.github/workflows/CompatHelper.yml old mode 100644 new mode 100755 diff --git a/.github/workflows/Downgrade.yml b/.github/workflows/Downgrade.yml old mode 100644 new mode 100755 diff --git a/.github/workflows/FormatCheck.yml b/.github/workflows/FormatCheck.yml old mode 100644 new mode 100755 diff --git a/.github/workflows/Invalidations.yml b/.github/workflows/Invalidations.yml old mode 100644 new mode 100755 diff --git a/.github/workflows/TagBot.yml b/.github/workflows/TagBot.yml old mode 100644 new mode 100755 diff --git a/.github/workflows/Tests.yml b/.github/workflows/Tests.yml old mode 100644 new mode 100755 diff --git a/.gitignore b/.gitignore old mode 100644 new mode 100755 diff --git a/.typos.toml b/.typos.toml old mode 100644 new mode 100755 diff --git a/CITATION.bib b/CITATION.bib old mode 100644 new mode 100755 diff --git a/LICENSE b/LICENSE old mode 100644 new mode 100755 diff --git a/Project.toml b/Project.toml old mode 100644 new mode 100755 index a7c35268..86eb9627 --- a/Project.toml +++ b/Project.toml @@ -1,19 +1,19 @@ name = "ReservoirComputing" uuid = "7c2d2b1e-3dd4-11ea-355a-8f6a8116e294" authors = ["Francesco Martinuzzi"] -version = "0.10.4" +version = "0.10.5" [deps] Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" CellularAutomata = "878138dc-5b27-11ea-1a71-cb95d38d6b29" Distances = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7" -Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd" -Optim = "429524aa-4258-5aef-a3af-852621145aeb" PartialFunctions = "570af359-4316-4cb7-8c74-252c00c2016b" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" +Reexport = "189a3867-3050-52da-a836-e630ba90ab69" Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" +StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" WeightInitializers = "d49dbf32-c5c2-4618-8acc-27bb2598ef2d" [weakdeps] @@ -30,23 +30,25 @@ Aqua = "0.8" CellularAutomata = "0.0.2" DifferentialEquations = "7" Distances = "0.10" -Distributions = "0.25.36" LIBSVM = "0.8" LinearAlgebra = "1.10" MLJLinearModels = "0.9.2, 0.10" NNlib = "0.8.4, 0.9" -Optim = "1" PartialFunctions = "1.2" Random = "1.10" +Reexport = "1.2.2" SafeTestsets = "0.1" Statistics = "1.10" +StatsBase = "0.34.4" Test = "1" -WeightInitializers = "0.1.6" +WeightInitializers = "1.0.4" julia = "1.10" [extras] Aqua = "4c88cf16-eb10-579e-8560-4a9242c79595" DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" +LIBSVM = "b1bec4e5-fd48-53fe-b0cb-9723c09d164b" +MLJLinearModels = "6ee0df7b-362f-4a72-a706-9e79364fb692" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" diff --git a/README.md b/README.md old mode 100644 new mode 100755 index 82154140..ce952571 --- a/README.md +++ b/README.md @@ -1,25 +1,19 @@

-
- [![Join the chat at https://julialang.zulipchat.com #sciml-bridged](https://img.shields.io/static/v1?label=Zulip&message=chat&color=9558b2&labelColor=389826)](https://julialang.zulipchat.com/#narrow/stream/279055-sciml-bridged) [![Global Docs](https://img.shields.io/badge/docs-SciML-blue.svg)](https://docs.sciml.ai/ReservoirComputing/stable/) [![arXiv](https://img.shields.io/badge/arXiv-2204.05117-00b300.svg)](https://arxiv.org/abs/2204.05117) - [![codecov](https://codecov.io/gh/SciML/ReservoirComputing.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/SciML/ReservoirComputing.jl) [![Build Status](https://github.com/SciML/ReservoirComputing.jl/workflows/CI/badge.svg)](https://github.com/SciML/ReservoirComputing.jl/actions?query=workflow%3ACI) [![Build status](https://badge.buildkite.com/db8f91b89a10ad79bbd1d9fdb1340e6f6602a1c0ed9496d4d0.svg)](https://buildkite.com/julialang/reservoircomputing-dot-jl) - [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor%27s%20Guide-blueviolet)](https://github.com/SciML/ColPrac) [![SciML Code Style](https://img.shields.io/static/v1?label=code%20style&message=SciML&color=9558b2&labelColor=389826)](https://github.com/SciML/SciMLStyle)
- # ReservoirComputing.jl ReservoirComputing.jl provides an efficient, modular and easy to use implementation of Reservoir Computing models such as Echo State Networks (ESNs). For information on using this package please refer to the [stable documentation](https://docs.sciml.ai/ReservoirComputing/stable/). Use the [in-development documentation](https://docs.sciml.ai/ReservoirComputing/dev/) to take a look at at not yet released features. - ## Quick Example To illustrate the workflow of this library we will showcase how it is possible to train an ESN to learn the dynamics of the Lorenz system. As a first step we will need to gather the data. For the `Generative` prediction we need the target data to be one step ahead of the training data: diff --git a/docs/Project.toml b/docs/Project.toml old mode 100644 new mode 100755 diff --git a/docs/make.jl b/docs/make.jl old mode 100644 new mode 100755 diff --git a/docs/pages.jl b/docs/pages.jl old mode 100644 new mode 100755 diff --git a/docs/src/api/esn.md b/docs/src/api/esn.md old mode 100644 new mode 100755 diff --git a/docs/src/api/esn_drivers.md b/docs/src/api/esn_drivers.md old mode 100644 new mode 100755 diff --git a/docs/src/api/predict.md b/docs/src/api/predict.md old mode 100644 new mode 100755 diff --git a/docs/src/api/reca.md b/docs/src/api/reca.md old mode 100644 new mode 100755 diff --git a/docs/src/api/states.md b/docs/src/api/states.md old mode 100644 new mode 100755 diff --git a/docs/src/api/training.md b/docs/src/api/training.md old mode 100644 new mode 100755 diff --git a/docs/src/assets/favicon.ico b/docs/src/assets/favicon.ico old mode 100644 new mode 100755 diff --git a/docs/src/assets/logo.png b/docs/src/assets/logo.png old mode 100644 new mode 100755 diff --git a/docs/src/esn_tutorials/change_layers.md b/docs/src/esn_tutorials/change_layers.md old mode 100644 new mode 100755 diff --git a/docs/src/esn_tutorials/data/santafe_laser.txt b/docs/src/esn_tutorials/data/santafe_laser.txt old mode 100644 new mode 100755 diff --git a/docs/src/esn_tutorials/deep_esn.md b/docs/src/esn_tutorials/deep_esn.md old mode 100644 new mode 100755 diff --git a/docs/src/esn_tutorials/different_drivers.md b/docs/src/esn_tutorials/different_drivers.md old mode 100644 new mode 100755 diff --git a/docs/src/esn_tutorials/different_training.md b/docs/src/esn_tutorials/different_training.md old mode 100644 new mode 100755 diff --git a/docs/src/esn_tutorials/hybrid.md b/docs/src/esn_tutorials/hybrid.md old mode 100644 new mode 100755 diff --git a/docs/src/esn_tutorials/lorenz_basic.md b/docs/src/esn_tutorials/lorenz_basic.md old mode 100644 new mode 100755 diff --git a/docs/src/general/different_training.md b/docs/src/general/different_training.md old mode 100644 new mode 100755 diff --git a/docs/src/general/predictive_generative.md b/docs/src/general/predictive_generative.md old mode 100644 new mode 100755 diff --git a/docs/src/general/states_variation.md b/docs/src/general/states_variation.md old mode 100644 new mode 100755 diff --git a/docs/src/index.md b/docs/src/index.md old mode 100644 new mode 100755 diff --git a/docs/src/reca_tutorials/5bitinput.txt b/docs/src/reca_tutorials/5bitinput.txt old mode 100644 new mode 100755 diff --git a/docs/src/reca_tutorials/5bitoutput.txt b/docs/src/reca_tutorials/5bitoutput.txt old mode 100644 new mode 100755 diff --git a/docs/src/reca_tutorials/reca.md b/docs/src/reca_tutorials/reca.md old mode 100644 new mode 100755 diff --git a/ext/RCLIBSVMExt.jl b/ext/RCLIBSVMExt.jl old mode 100644 new mode 100755 diff --git a/ext/RCMLJLinearModelsExt.jl b/ext/RCMLJLinearModelsExt.jl old mode 100644 new mode 100755 diff --git a/src/ReservoirComputing.jl b/src/ReservoirComputing.jl old mode 100644 new mode 100755 index 8a9abab5..3ef8d25c --- a/src/ReservoirComputing.jl +++ b/src/ReservoirComputing.jl @@ -3,28 +3,15 @@ module ReservoirComputing using Adapt using CellularAutomata using Distances -using Distributions using LinearAlgebra using NNlib -using Optim using PartialFunctions using Random +using Reexport: Reexport, @reexport using Statistics -using WeightInitializers - -export NLADefault, NLAT1, NLAT2, NLAT3 -export StandardStates, ExtendedStates, PaddedStates, PaddedExtendedStates -export StandardRidge -export scaled_rand, weighted_init, informed_init, minimal_init -export rand_sparse, delay_line, delay_line_backward, cycle_jumps, simple_cycle, pseudo_svd -export RNN, MRNN, GRU, GRUParams, FullyGated, Minimal -export train -export ESN -export HybridESN, KnowledgeModel -export DeepESN -export RECA -export RandomMapping, RandomMaps -export Generative, Predictive, OutputLayer +using StatsBase: sample +using WeightInitializers: DeviceAgnostic, PartialFunction, Utils +@reexport using WeightInitializers #define global types abstract type AbstractReservoirComputer end @@ -104,34 +91,39 @@ function Predictive(prediction_data) Predictive(prediction_data, prediction_len) end -__partial_apply(fn, inp) = fn$inp -#fallbacks for initializers +#fallbacks for initializers #eventually to remove once migrated to WeightInitializers.jl for initializer in (:rand_sparse, :delay_line, :delay_line_backward, :cycle_jumps, :simple_cycle, :pseudo_svd, :scaled_rand, :weighted_init, :informed_init, :minimal_init) - NType = ifelse(initializer === :rand_sparse, Real, Number) - @eval function ($initializer)(dims::Integer...; kwargs...) - return $initializer(WeightInitializers._default_rng(), Float32, dims...; kwargs...) - end - @eval function ($initializer)(rng::AbstractRNG, dims::Integer...; kwargs...) - return $initializer(rng, Float32, dims...; kwargs...) - end - @eval function ($initializer)(::Type{T}, - dims::Integer...; kwargs...) where {T <: $NType} - return $initializer(WeightInitializers._default_rng(), T, dims...; kwargs...) - end - @eval function ($initializer)(rng::AbstractRNG; kwargs...) - return __partial_apply($initializer, (rng, (; kwargs...))) + @eval begin + function ($initializer)(dims::Integer...; kwargs...) + return $initializer(Utils.default_rng(), Float32, dims...; kwargs...) + end + function ($initializer)(rng::AbstractRNG, dims::Integer...; kwargs...) + return $initializer(rng, Float32, dims...; kwargs...) + end + function ($initializer)(::Type{T}, dims::Integer...; kwargs...) where {T <: Number} + return $initializer(Utils.default_rng(), T, dims...; kwargs...) + end + + # Partial application + function ($initializer)(rng::AbstractRNG; kwargs...) + return PartialFunction.Partial{Nothing}($initializer, rng, kwargs) + end + function ($initializer)(::Type{T}; kwargs...) where {T <: Number} + return PartialFunction.Partial{T}($initializer, nothing, kwargs) + end + function ($initializer)(rng::AbstractRNG, ::Type{T}; kwargs...) where {T <: Number} + return PartialFunction.Partial{T}($initializer, rng, kwargs) + end + function ($initializer)(; kwargs...) + return PartialFunction.Partial{Nothing}($initializer, nothing, kwargs) + end end - @eval function ($initializer)(rng::AbstractRNG, - ::Type{T}; kwargs...) where {T <: $NType} - return __partial_apply($initializer, ((rng, T), (; kwargs...))) - end - @eval ($initializer)(; kwargs...) = __partial_apply( - $initializer, (; kwargs...)) end + #general include("states.jl") include("predict.jl") @@ -158,4 +150,18 @@ if !isdefined(Base, :get_extension) include("../ext/RCLIBSVMExt.jl") end +export NLADefault, NLAT1, NLAT2, NLAT3 +export StandardStates, ExtendedStates, PaddedStates, PaddedExtendedStates +export StandardRidge +export scaled_rand, weighted_init, informed_init, minimal_init +export rand_sparse, delay_line, delay_line_backward, cycle_jumps, simple_cycle, pseudo_svd +export RNN, MRNN, GRU, GRUParams, FullyGated, Minimal +export train +export ESN +export HybridESN, KnowledgeModel +export DeepESN +export RECA, sample +export RandomMapping, RandomMaps +export Generative, Predictive, OutputLayer + end #module diff --git a/src/esn/deepesn.jl b/src/esn/deepesn.jl old mode 100644 new mode 100755 index 636e0db1..cd8de8c0 --- a/src/esn/deepesn.jl +++ b/src/esn/deepesn.jl @@ -80,7 +80,7 @@ function DeepESN(train_data, nla_type = NLADefault(), states_type = StandardStates(), washout::Int = 0, - rng = WeightInitializers._default_rng(), + rng = Utils.default_rng(), T = Float64, matrix_type = typeof(train_data)) if states_type isa AbstractPaddedStates diff --git a/src/esn/esn.jl b/src/esn/esn.jl old mode 100644 new mode 100755 index f53939a5..1c1a7a65 --- a/src/esn/esn.jl +++ b/src/esn/esn.jl @@ -54,7 +54,7 @@ function ESN(train_data, nla_type = NLADefault(), states_type = StandardStates(), washout = 0, - rng = WeightInitializers._default_rng(), + rng = Utils.default_rng(), T = Float32, matrix_type = typeof(train_data)) if states_type isa AbstractPaddedStates diff --git a/src/esn/esn_input_layers.jl b/src/esn/esn_input_layers.jl old mode 100644 new mode 100755 index 6bbb5267..296f1768 --- a/src/esn/esn_input_layers.jl +++ b/src/esn/esn_input_layers.jl @@ -26,7 +26,8 @@ function scaled_rand(rng::AbstractRNG, dims::Integer...; scaling = T(0.1)) where {T <: Number} res_size, in_size = dims - layer_matrix = T.(rand(rng, Uniform(-scaling, scaling), res_size, in_size)) + layer_matrix = (DeviceAgnostic.rand(rng, T, res_size, in_size) .- T(0.5)) .* + (T(2) * scaling) return layer_matrix end @@ -65,13 +66,12 @@ function weighted_init(rng::AbstractRNG, scaling = T(0.1)) where {T <: Number} approx_res_size, in_size = dims res_size = Int(floor(approx_res_size / in_size) * in_size) - layer_matrix = zeros(T, res_size, in_size) + layer_matrix = DeviceAgnostic.zeros(rng, T, res_size, in_size) q = floor(Int, res_size / in_size) for i in 1:in_size - layer_matrix[((i - 1) * q + 1):((i) * q), i] = rand(rng, - Uniform(-scaling, scaling), - q) + layer_matrix[((i - 1) * q + 1):((i) * q), i] = (DeviceAgnostic.rand(rng, T, q) .- + T(0.5)) .* (T(2) * scaling) end return layer_matrix @@ -113,25 +113,28 @@ function informed_init(rng::AbstractRNG, ::Type{T}, dims::Integer...; throw(DimensionMismatch("in_size must be greater than model_in_size")) end - input_matrix = zeros(res_size, in_size) - zero_connections = zeros(in_size) + input_matrix = DeviceAgnostic.zeros(rng, T, res_size, in_size) + zero_connections = DeviceAgnostic.zeros(rng, T, in_size) num_for_state = floor(Int, res_size * gamma) num_for_model = floor(Int, res_size * (1 - gamma)) for i in 1:num_for_state idxs = findall(Bool[zero_connections .== input_matrix[i, :] for i in 1:size(input_matrix, 1)]) - random_row_idx = idxs[rand(rng, 1:end)] - random_clm_idx = range(1, state_size, step = 1)[rand(rng, 1:end)] - input_matrix[random_row_idx, random_clm_idx] = rand(rng, Uniform(-scaling, scaling)) + random_row_idx = idxs[DeviceAgnostic.rand(rng, T, 1:end)] + random_clm_idx = range(1, state_size, step = 1)[DeviceAgnostic.rand(rng, T, 1:end)] + input_matrix[random_row_idx, random_clm_idx] = (DeviceAgnostic.rand(rng, T) - + T(0.5)) .* (T(2) * scaling) end for i in 1:num_for_model idxs = findall(Bool[zero_connections .== input_matrix[i, :] for i in 1:size(input_matrix, 1)]) - random_row_idx = idxs[rand(rng, 1:end)] - random_clm_idx = range(state_size + 1, in_size, step = 1)[rand(rng, 1:end)] - input_matrix[random_row_idx, random_clm_idx] = rand(rng, Uniform(-scaling, scaling)) + random_row_idx = idxs[DeviceAgnostic.rand(rng, T, 1:end)] + random_clm_idx = range(state_size + 1, in_size, step = 1)[DeviceAgnostic.rand( + rng, T, 1:end)] + input_matrix[random_row_idx, random_clm_idx] = (DeviceAgnostic.rand(rng, T) - + T(0.5)) .* (T(2) * scaling) end return input_matrix @@ -196,11 +199,14 @@ function _create_bernoulli(p::Number, weight::Number, rng::AbstractRNG, ::Type{T}) where {T <: Number} - input_matrix = zeros(T, res_size, in_size) + input_matrix = DeviceAgnostic.zeros(rng, T, res_size, in_size) for i in 1:res_size for j in 1:in_size - rand(rng, Bernoulli(p)) ? (input_matrix[i, j] = weight) : - (input_matrix[i, j] = -weight) + if DeviceAgnostic.rand(rng, T) < p + input_matrix[i, j] = weight + else + input_matrix[i, j] = -weight + end end end return input_matrix @@ -216,8 +222,8 @@ function _create_irrational(irrational::Irrational, setprecision(BigFloat, Int(ceil(log2(10) * (res_size * in_size + start + 1)))) ir_string = string(BigFloat(irrational)) |> collect deleteat!(ir_string, findall(x -> x == '.', ir_string)) - ir_array = zeros(length(ir_string)) - input_matrix = zeros(T, res_size, in_size) + ir_array = DeviceAgnostic.zeros(rng, T, length(ir_string)) + input_matrix = DeviceAgnostic.zeros(rng, T, res_size, in_size) for i in 1:length(ir_string) ir_array[i] = parse(Int, ir_string[i]) @@ -225,7 +231,7 @@ function _create_irrational(irrational::Irrational, for i in 1:res_size for j in 1:in_size - random_number = rand(rng, T) + random_number = DeviceAgnostic.rand(rng, T) input_matrix[i, j] = random_number < 0.5 ? -weight : weight end end diff --git a/src/esn/esn_predict.jl b/src/esn/esn_predict.jl old mode 100644 new mode 100755 diff --git a/src/esn/esn_reservoir_drivers.jl b/src/esn/esn_reservoir_drivers.jl old mode 100644 new mode 100755 diff --git a/src/esn/esn_reservoirs.jl b/src/esn/esn_reservoirs.jl old mode 100644 new mode 100755 index ef151084..6ac4ed23 --- a/src/esn/esn_reservoirs.jl +++ b/src/esn/esn_reservoirs.jl @@ -66,7 +66,7 @@ function delay_line(rng::AbstractRNG, ::Type{T}, dims::Integer...; weight = T(0.1)) where {T <: Number} - reservoir_matrix = zeros(T, dims...) + reservoir_matrix = DeviceAgnostic.zeros(rng, T, dims...) @assert length(dims) == 2&&dims[1] == dims[2] "The dimensions must define a square matrix (e.g., (100, 100))" for i in 1:(dims[1] - 1) @@ -107,7 +107,7 @@ function delay_line_backward(rng::AbstractRNG, weight = T(0.1), fb_weight = T(0.2)) where {T <: Number} res_size = first(dims) - reservoir_matrix = zeros(T, dims...) + reservoir_matrix = DeviceAgnostic.zeros(rng, T, dims...) for i in 1:(res_size - 1) reservoir_matrix[i + 1, i] = weight @@ -148,7 +148,7 @@ function cycle_jumps(rng::AbstractRNG, jump_weight::Number = T(0.1), jump_size::Int = 3) where {T <: Number} res_size = first(dims) - reservoir_matrix = zeros(T, dims...) + reservoir_matrix = DeviceAgnostic.zeros(rng, T, dims...) for i in 1:(res_size - 1) reservoir_matrix[i + 1, i] = cycle_weight @@ -194,7 +194,7 @@ function simple_cycle(rng::AbstractRNG, ::Type{T}, dims::Integer...; weight = T(0.1)) where {T <: Number} - reservoir_matrix = zeros(T, dims...) + reservoir_matrix = DeviceAgnostic.zeros(rng, T, dims...) for i in 1:(dims[1] - 1) reservoir_matrix[i + 1, i] = weight @@ -237,38 +237,42 @@ function pseudo_svd(rng::AbstractRNG, sparsity::Number = 0.1, sorted::Bool = true, reverse_sort::Bool = false) where {T <: Number} - reservoir_matrix = create_diag(dims[1], - max_value, - T; + reservoir_matrix = create_diag(rng, T, dims[1], + max_value; sorted = sorted, reverse_sort = reverse_sort) tmp_sparsity = get_sparsity(reservoir_matrix, dims[1]) while tmp_sparsity <= sparsity - reservoir_matrix *= create_qmatrix(dims[1], - rand(1:dims[1]), - rand(1:dims[1]), - rand(T) * T(2) - T(1), - T) + reservoir_matrix *= create_qmatrix(rng, T, dims[1], + rand_range(rng, T, dims[1]), + rand_range(rng, T, dims[1]), + DeviceAgnostic.rand(rng, T) * T(2) - T(1)) tmp_sparsity = get_sparsity(reservoir_matrix, dims[1]) end return reservoir_matrix end -function create_diag(dim::Number, max_value::Number, ::Type{T}; +#hacky workaround for the moment +function rand_range(rng, T, n::Int) + return Int(1 + floor(DeviceAgnostic.rand(rng, T) * n)) +end + +function create_diag(rng::AbstractRNG, ::Type{T}, dim::Number, max_value::Number; sorted::Bool = true, reverse_sort::Bool = false) where {T <: Number} - diagonal_matrix = zeros(T, dim, dim) + diagonal_matrix = DeviceAgnostic.zeros(rng, T, dim, dim) if sorted == true if reverse_sort == true - diagonal_values = sort(rand(T, dim) .* max_value, rev = true) + diagonal_values = sort( + DeviceAgnostic.rand(rng, T, dim) .* max_value, rev = true) diagonal_values[1] = max_value else - diagonal_values = sort(rand(T, dim) .* max_value) + diagonal_values = sort(DeviceAgnostic.rand(rng, T, dim) .* max_value) diagonal_values[end] = max_value end else - diagonal_values = rand(T, dim) .* max_value + diagonal_values = DeviceAgnostic.rand(rng, T, dim) .* max_value end for i in 1:dim @@ -278,12 +282,11 @@ function create_diag(dim::Number, max_value::Number, ::Type{T}; return diagonal_matrix end -function create_qmatrix(dim::Number, +function create_qmatrix(rng::AbstractRNG, ::Type{T}, dim::Number, coord_i::Number, coord_j::Number, - theta::Number, - ::Type{T}) where {T <: Number} - qmatrix = zeros(T, dim, dim) + theta::Number) where {T <: Number} + qmatrix = DeviceAgnostic.zeros(rng, T, dim, dim) for i in 1:dim qmatrix[i, i] = 1.0 diff --git a/src/esn/hybridesn.jl b/src/esn/hybridesn.jl old mode 100644 new mode 100755 index ad134a9e..b766b013 --- a/src/esn/hybridesn.jl +++ b/src/esn/hybridesn.jl @@ -126,7 +126,7 @@ function HybridESN(model, nla_type = NLADefault(), states_type = StandardStates(), washout = 0, - rng = WeightInitializers._default_rng(), + rng = Utils.default_rng(), T = Float32, matrix_type = typeof(train_data)) train_data = vcat(train_data, model.model_data[:, 1:(end - 1)]) diff --git a/src/predict.jl b/src/predict.jl old mode 100644 new mode 100755 diff --git a/src/reca/reca.jl b/src/reca/reca.jl old mode 100644 new mode 100755 diff --git a/src/reca/reca_input_encodings.jl b/src/reca/reca_input_encodings.jl old mode 100644 new mode 100755 diff --git a/src/states.jl b/src/states.jl old mode 100644 new mode 100755 diff --git a/src/train/linear_regression.jl b/src/train/linear_regression.jl old mode 100644 new mode 100755 diff --git a/test/esn/deepesn.jl b/test/esn/deepesn.jl old mode 100644 new mode 100755 diff --git a/test/esn/test_drivers.jl b/test/esn/test_drivers.jl old mode 100644 new mode 100755 diff --git a/test/esn/test_hybrid.jl b/test/esn/test_hybrid.jl old mode 100644 new mode 100755 diff --git a/test/esn/test_inits.jl b/test/esn/test_inits.jl old mode 100644 new mode 100755 diff --git a/test/esn/test_train.jl b/test/esn/test_train.jl old mode 100644 new mode 100755 diff --git a/test/qa.jl b/test/qa.jl old mode 100644 new mode 100755 diff --git a/test/reca/test_predictive.jl b/test/reca/test_predictive.jl old mode 100644 new mode 100755 diff --git a/test/runtests.jl b/test/runtests.jl old mode 100644 new mode 100755 index 27a8ed2c..8f051129 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -7,7 +7,7 @@ using Test end @testset "Echo State Networks" begin - @safetestset "ESN Input Layers" include("esn/test_inits.jl") + @safetestset "ESN Initializers" include("esn/test_inits.jl") @safetestset "ESN Train and Predict" include("esn/test_train.jl") @safetestset "ESN Drivers" include("esn/test_drivers.jl") @safetestset "Hybrid ESN" include("esn/test_hybrid.jl") diff --git a/test/test_states.jl b/test/test_states.jl old mode 100644 new mode 100755